e United States Air Force
Research Laboratory

Upgrading the ATB Model Code from
FORTRAN 77 to FORTRAN 90

Thomas R. Gardner

BLACK ROCK DYNAMICS
30 Derussey Lane
Cornwell NY 12518

July 2004

Final Repbrt for the Period January 1998 to May 2004

20041109 04

Human Effectiveness Directorate
Approved for public release; distribution Biosciences & Protection Division
is unlimited. . .

Biomechanics Branch

2800 Q Street, Bldg 824, Rm 206
Wright-Patterson AFB OH 45433-7947

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obhgatlon whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise, as in any manner, licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture, use or sell
any patented invention that may in any way be related thereto.

Please do not request copies of this report from the Air Force Resesarch Laboratory. Additional
copies may be purchased from:

Nationa:l Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Federal Government agencies and their contractors registered with Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft Belvoir VA 22060- 6218
TECHNICAL REVIEW AND APPROVAL
AFRL-HE-WP-TR-2004- 0113

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general

public, including foreign nations.
This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

//Signed//

MARK M. HOFFMAN
Deputy Chief, Biosciences and Protection Division
Air Force Research Laboratory

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, vA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0 188),
Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 2004 Final Report Jan 1998 — May 2004
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Upgrading the ATB model code from FORTRAN 77 to FORTRAN 90
C-F33657-97-D-6004
PE: 62202F
PR: 7184
6. AUTHOR(S) TA: 718402
WU: 71840202
Thomas R. Gardner
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
BlackRock Dynamics) ' REPORT NUMBER
30 DeRussey Lane
Comwall NY 12518
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory, Human Effectiveness Directorate . AGENCY REPORT NUMBER
Biosciences and Protection Division AFRL-HE-WP-TR-2004- 0113
Biomechanics Branch
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7947
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION/AVAILABILITY STATEMENT) 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

The Articulated Total Body (ATB) Model and its predecessors have been in use for over twenty-five years to study the effects of various
force environments on the response of a multi-body subject. The ATB model has been used by both government and industry to study the
effects of automobile crashes, aircraft ejections, and other accident scenarios. The applications of the ATB Model have varied since its
inception, and it is now commonly used for accident reconstruction, ergonomic simulations and a myriad of other situations where human
body motion is modeled. The ATB Model was originally written in the FORTRAN IV (FORTRAN 66) programming language, but with |
time the code has gradually been modified to become essentially Fortran 77 compliant code. This modernization of the code has helped to
reduce some of the clever coding logic originally employed to circumvent some of the hardware constraints of the earlier computers, such as
purposely allowing arrays to overflow in adjacent memory locations to conserve memory space. With the increased use of the ATB Model, it
would be beneficial to have the program coded in a more modern modular format that is readily amenable to future enhancements. Such a
modular version of the code would also easily interface with other programs, such FEM and aerodynamic codes, other dynamics codes,
feedback control packages, graphics packages, and numerous other related codes. In addition, such a modular code would lend itself to faster
debugging and reduce the potential for undetected errors. The Fortran 90 programming language was chosen as the upgrade path for the
ATB Model code for a number of reasons. Since Fortran 90 is a superset of Fortran 77, any standard Fortran 77 code should run without
modification. In addition, anyone familiar with Fortran 77 can quickly become knowledgeable about Fortran 90. A Fortran 77-compliant
program can be first compiled using the Fortran 90 compiler and can then be gradually and incrementally upgraded without having to
completely rewrite the code.

14. SUBJECT TERMS 15. NUMBER OF PAGES
121
FORTRAN 90, ATB, Human Body Modeling, Simulation 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT UNLIMITED

Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Computer Generated 1996 } Prescribed by ANSI Std. 239-18

i 298-102

THIS PAGE INTENTIONALLY LEFT BLANK.

i

PREFACE

The research in this report was conducted by Thomas R. Gardner of BlackRock
Dynamics under a subcontract to General Dynamics (FY98-06-08) for the
Biomechanics Branch, Biosciences and Protection Division, Human
Effectiveness Directorate of the Air Force Research Laboratory.

Dr. Joseph A. Pellettiere of AFRL/HEPA was the technical monitor for the

contract while Ms. Annette Rizer and Mr. Huaining Cheng of General Dynamics
provided invaluable editing, review, and coordination of the programming tasks.

1ii

THIS PAGE INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

TABLE OF CONTENTS ..o cieevtitecriettcsteeteetsesaesseerentessesassare s s sebsess s saasasabessssnesseasanasasssasessinssesnons v
LIST OF FIGURES. ... etcetioteieieitestietesseessseseessessassseeesssstsseassssssssessssstsasessnnassssasastasssesonsessessnissssnoses vi
1. INTRODUCTION ..ot ecteeteteiecrisrereserressesesseses e st ssestsas s sabssbesssabe saessna s s b e s b b et e sss st et nebensssabennes 1
1.4 BACKGIOUNTv.ecucerrrerereercaeisetnietetesere s sesssss s sese st s et e b s b s h s sa s s bbb s b 1

1.2 JUSHIFICALION ...oveeeeeeeerecereiie e eeeeestesstes s eseeeesarsessas san e b s e se s ebn s sesa s e e s s s b e nsessa s sn e s ses e s nesesnnses 1

LI = T (1o 7= | = T OO SOOI PP PR 2

1.4 Approach.............. e eevertesasereisseressassisesastnessnteraTesEaaRyiedesNt SRROLaNESserRRn S sanEne et s e R e et e Ut B ee R Eeasatess 2

2. CODING CHANGES TO VERSION V.1 ..ottt vnes st s s s s 4
2.1 Task Dictated Global Coding Changescccovvivivuiiiiiiinieiireerirne e ses i 4

2.2 Additional Global Coding Changes.........ccocciviiiiieniieinnins e 14

2.3 NEW SUDPIOGIAMScucmierimimiiiiiitetesestessrssse s st asb ettt s n st sa s R en s 22

2.4 Significantly Altered SUBTOUtINES ..o 32

2.5 Eliminated SUDIOULINEScovrierierecrenre ittt ssssen st eerereens 33

2.6 List-Directed ATB INPUL FIle ...cevneieeieiiiiiiii e, 34

2.7 Miscellaneous ModifiCationScuiiiiiiiiiii i 35

3. VERIFICATION SIMULATIONS ..ottt et sreesstssnaesascssis s aassnee st e s s s saassseansesnneas 36
3.1 Simulation Data Sets and RESUISccceeveeeineiiiiniiiicciie e s 36

3.2 SGI SIMUIBLIONS .ccoeeeiieieieei et erecnar e e e see s sre s s raas s s sbs s e s bt e e sessen s s rbaeaseess e e s s s sananassnnees 56

3.3 Other SIMUIAHONScoceeeeiiieieierterree st sn st ne s e s e s a e s e e e s s b e st s sesenastonesas 56

3.4 DIiSCUSSION Of RESUIS ...c..veuveieiieerireircitreecrneesses s sresicstessaresssaerasssasesesssnne e sessnasnensasssenes 56

4. RECOMMENDATIONSooiiiteiereertresiestesrtestsaeeressestossnsss s besasssssresensaassssssanssssenssssssassesenans 59
B I 07 [131o FO OO OO O S TPPOU TP UP PP PO PP TPT O 59

4.2 Use Of MUHIPIE FlES.......co.oviereeecrieiiiiceititcee et 60

5, CONCLUSIONSooviieieeireciertereeeeseriressessesasesesstess st esesstisssssssssssesssesnssssasanesssssnassesssassnsssans 62
B. REFERENCES ..o oottt eiveertestestesreesssses s essessss st e sasss st e saseebsessssennneasansessnassnesasessnsesasnsanees 63
Appendix A - Module SoUrce COde...........coueirimimmnininieieei s 65
A.1 MODULE_STANDARD SoUrce Code..........comrinmminrneiniinieiiciesstieniii s 66
A.2 MODULE_FLEXIBLE SoUrce Code.........coovvimiiienminninnieninenencestsetssnsiissssessssnsessns 86
A.3 MODULE_WATER S0OUrce COE......ccovriiiririiieinnieie it st it csssen st s 89
Appendix B - Listings of SUbroutinesooiiieriiiiinii .91
B.1 Migration of V.1 Subroutines to V.3 SUbroutines................ccceveeeerieimiiieeicnininii. 93
B.2 V.3 Subroutines by FUNCHONuvveeiriiiiiiiiiiii e st 96
Appendix C - Miscellaneous Coding Change Notes.......... et s et e et s s e e s saaas 99

LIST OF FIGURES

Figure 1 Ball Data Set Resultant Acceleration vs Timeccooievnininiinincicccs s 37
Figure 2 Body Data Set Angular Momentum vs TIMecccoceviiiiiiiininicnines e 38
Figure 3 Ejection Data Set Resultant Acceleration vs TiMe ... 39
Figure 4 H4 Card Data Set Resultant Acceleration vs Time...........ccccecniniinniininiicnieincccne, 40
Figure 5 Human Data Set Resultant Acceleration vs TiMec.cocvieimeniiniiiiminiiee e 41
Figure 6 HYBIIl Data Set Upper Torso Resultant Acceleration vs Time - Harness Belts with
SlIAING v eeveeeeeieereeeererrt et e e rreestessteeese e e et e este s sasae s e eesee s s e resrenr e s an e sasset e st e anesatestetenrens 42

Figure 7 HYBIIl Data Set Head Resultant Acceleration vs Time — Harness Belts with Sliding.....43
Figure 8 HYBI!I Data Set Upper Torso Acceleration vs Time - Harness Belts without Sliding......44
Figure 9 HYBIIl Data Set Head Resultant Acceleration vs Time - Harness Belts without Sliding.45

Figure 10 Jump Data Set Resultant Acceleration vs TiMecouviieeiiiinnieiiiee, 46
Figure 11 Joint Star Data Set Resultant Acceleration vs TiMe.......cccocvevevivrieienincicniineeeenn, 47
Figure 12 Merlin Data Set Y Relative-Angular Acceleration vs Timecccocveevieeieniiniininninn 48
Figure 13 Neck Data Set Resultant Acceleration vs Time.........cccccoecviiiniiinin it e 49
Figure 14 S10INT Data Set Head Resultant Acceleration vs Time - First Body.......c....c.ccoevennenin. 50
Figure 15 S10INT Data Set Upper Torso Resultant Acceleration vs Time - First Body 51
Figure 16 S10INT Data Set Upper Torso Resultant Acceleration vs Time - Second Body........... 52
Figure 17 S10INT2 Data Set Head Resultant Acceleration vs Time - First Body..........c..c.cecu.e. 53

Figure 18 S10INT2 Data Set Upper Torson Resultant Acceleration vs Time - Second Body....... 54
Figure 19 Water Data Set Resultant Acceleration vs TiMec.cccovenieceniininvicnnececinee 55

1. INTRODUCTION

This report is a summary of the work performed for General Dynamics under Consulting
Agreement FY98-06-08. A brief overview of the need for this work and the approach taken is

given below.

1.1 Background

The Articulated Total Body (ATB) Model and its predecessors have been in use for over
twenty-five years to study the effects of various force environments on the response of a multi-
body subject. The ATB Model is a U.S. Air Force sponsored, much-enhanced derivative of the
Crash Victim Simulator (CVS) model developed by Calspan for the DOT and MVA [1]. The CVS
mode! was originally developed to model crash dummies and has been used by both government
and industry to study the effects of automobile crashes [2], aircraft ejections [3], and other related
transportation accident scenarios [4]. The applications of the ATB Model have become more
varied since its inception, and it is now commonly used for accident reconstruction, ergonomic

simulations and a myriad of other situations where human body motion is modeled.

1.2 Justification

The ATB Model was originally written in the FORTRAN IV (FORTRAN 66) programming
language, but with time the code has gradually been modified to become essentially Fortran 77
compliant code. This modernization of the code has helped to reduce some of the clever, yet
obtuse and convoluted coding logic originally employed to circumvent some of the hardware
constraints of the earlier computers, such as purposely allbwing arrays to overflow in adjacent
memory locations to conserve memory space. However, the ATB Model code still remained, in
many sections, dense, hard to follow, and very difficult to debug. Furthermore, this older style of
programming made it very difficult to modify the code to any extent and made it cumbersome,
even for people familiar with the code, to make significant additions and modifications to the
code. With the increased use of the ATB Model, it would be beneficial to have the program
coded in a more modern modular format that is readily amenable to future enhancements. Such
a modular version of the code would also easily interface with other programs, such FEM and
aerodynamic codes, other dynamics codes (e.g. the Head-Spine Model), feedback control
packages, graphics packages, and numerous other related codes. In addition, such a modular
code would lend itself to faster debugging and reduce the potential for undetected errors.

The standard input file (denoted by the extension .ain) to the ATB Model is a text file with
each record in the file corresponding to an 80 column Fortran data card. Therefore, each record
or consecutive sequence of records corresponds to a specific Fortran formatted sequential READ
statement. This arrangement requires strict placement of input data into the correct columns.

Placing a decimal point or digit into a wrong column may crash the simulation, or even worse,
produce erroneous results that are hard to detect and debug. [n addition, the maximum 80 input
column limit imposed by Fortran 77 greatly restricts the input space for some variables. Many of
them are allocated with only 6 digits. When encountered with a very small negative input value,
the user may only be able to keep at most two significant digits because the negative sign and
Fortan scientific E editor will take up at least 4 digits. To eliminate these drawbacks, a new free
format input structure is needed, as well as the capability to convert existing .ain files to a free

format input structure.

1.3 Rationale

The Fortran 90 programming language was chosen as the upgrade path for the ATB Model
code for a number of reasons. Since Fortran 90 [5,6] is a superset of Fortran 77, any standard
Fortran 77 code should run without modification. In addition, anyone familiar with Fortran 77 can
quickly become knowledgeable about Fortran 90. A Fortran 77-compliant program can be first
compiled using the Fortran 90 compiler and can then be gradually and incrementally upgraded
without having to completely rewrite the code. This approach greatly reduces the potential for
inadvertent coding mistakes that inevitably arise when any code as large as the ATB Model is
completely rewritten. Furthermore, there are a number of Fortran 90 compliant compilers
available both for personal computers as well as for workstations and supercomputers. The

personal computer compilers are very easy to use and reasonably priced.

Fortran 90 is an object-oriented language that allows for dynamic memory allocation. It
produces fast, efficient machine code and has provisions that allow the programmer to control the
numerical precision of the code across platforms. Fortran 90 has features that facilitate easier
linking with C++ subroutines and Fortran 95 [7,8] has intrinsic features that permit parallelization
of the code. Several additional features available in Fortran 90 are modules, structures,
recursion, pointers, allocatable arrays, definable operators, CASE, CYCLE and EXIT constructs
and variable names that may be up to 31 characters in length. Many of these new features were

utilized in the upgrade of the ATB Model code.

1.4 Approach
This effort has attempted to address the concerns of code readability, portability and

adherence to modern programming practices by upgrading the ATB Model to be a Fortran 90/95
compliant code, henceforth know as Version V.3 of the ATB Model. All subroutines within the
code were modified to some extent, some much more than others. New subroutines were written
and many long subroutines were broken into smaller, more functionally self-contained
subroutines. Many modifications were made to the ATB Model code, including correcting some

previously undetected bugs. A new type of free format input file was added utilitizing Fortran
90/95 list-directed input, and an option was built into the program to convert input from the old
fixed format into the new free format. Overall, the changes made to the code were primarily
programming oriented. Every effort was made to not alter the underlying logic used for the
mathematical/physical algorithms for models, such as the plane/segment force interaction,

harness-belt model, etc. This report details these changes.

2. CODING CHANGES TO VERSION V.1
Numerous changes were made to the ATB Model Version V.1 code. Some changes were

global, affecting all subroutines within the code, whereas other changes were specific to

individual subroutines.

2.1 Task Dictated Global Coding Changes
The global changes explained in the sections below pertain to the global changes as required

in the Statement of Work

2.1.1 Elimination of Common Blocks
The most significant global change was to remove all common biocks and replace all the

variables that were contained within the common blocks with global variables that are contained
in modules. The names of most of the variables that had been in the common blocks remain the
same, with only a few variables given modified names to eliminate duplicate names with local

variables. Common blocks were eliminated to permit the use of the USE ONLY option of the
USE statement. If a common block is placed in @ module, and that module is accessed by a
subroutine via the USE statement, all the variables contained within the named common block
become accessible to the subroutine. It is not possible to limit the scope of the subroutine to only
those variables used within the subroutine that are also contained within the named common

block.

The USE ONLY option in Fortran 90 allows the subroutine to have access to only those
variables listed in the USE ONLY statement. By listing in the USE ONLY statement only those
variables needed by a subroutine, it becomes easier to understand where global variables are
altered/modified throughout the code. It also makes it easier to understand which global
variables are needed by a subroutine. Therefore, to take advantage of the USE ONLY option in

Fortran 90, the use of common blocks was eliminated.

All common blocks that were in Version V.1 were placed in one of three modules according to
function. Each of the modules is described below, with a list of the named common blocks they
contain. Each module also contains comment statements that contain the format of the common
block as it existed in the Version V.1 code to make it easier for ATB Model programmers to follow
the coding changes. The variables that had been contained within the named common blocks
are grouped together where they are typed to further aid in understanding the changes that were

made to the code.

2.1.1.a MODULE STANDARD
This MODULE contains all of the common blocks that existed in the versions of the code prior
to Version V.1. It also contains several common blocks added in Version V.1 for the robotics

option and for additional time history output for the total body properties (Card H.10). It does not
contain the common blocks related to the deformable segment option or to the water forces.
Variables from the following named common blocks are included in MODULE_STANDARD

ABDATA CNSNTS CSTRNT HRNESS TMPVS2
ACTFR CNTSRF CYDATA INTEST VPOSTN
ACTFR1 COMAIN DAMPER JBARTZ v WINDFR
BAGDIM CONTRL DESCRP RSAVE XTRA
CDH10C CouT FILEN SGMNTS

CDINT COUTFMT FLXBLE TABLES

CEULER COUTN FORCES TEMPVI

CMATRX HBPTRB TITLES

2.1.1.b MODULE FLEXIBLE
This MODULE contains all of the common blocks that pertain to the deformable segment
option. Variables from the following named common blocks are included in

MODULE_FLEXIBLE.

FXBODY FXINT FXOUuT FXXTRA
FXCOEF FXJROT FXSING OLDDAT

FXFRC FXNVEL FXVAR

2.1.1.c MODULE WATER
This MODULE contains all of the common blocks that pertain to the water forces option.

Variables from the following named common blocks are included in MODULE_WATER.

ELPDAT WATINF2 WMASS
WATGRD WAVEDAT WRESLTS
WATINF1 WFACOP TEMPFD

2.1.1.d Advantages of MODULES
The use of modules to store global variables has several advantages over the BLOCK DATA

technique used in previous versions of the model. First and foremost is that a global variable is
typed and dimensioned only once, in the module, and the typing and dimensioning remain the
same throughout the program. This consistency is enforced during the compilation of the
program. Previous uses of INCLUDE statements (a common, but nonstandard extension of
Fortran 77) did not provide this consistency. Variables from a common block included in a
subroutine could be used differently, i.e. as a different type within a subroutine because no

mechanism exists in Fortran 77 to check variable usage across subroutines.

Parameters specified in a module are available to all subprograms via the USE statement.
This allows for easy, consistent specification of dimensions throughout the program that is

enforced during compilation.

The KIND of the variable may also be specified in the module (as will be explained in more
detail below) as a parameter. Changing of a single parameter in the module and recompiling the
code allows entire sets of variables to be changed from single precision to double precision, or

visa versa, with no additional coding changes.

2.1.1.e Elimination of BLOCKDATA
The use of modules has negated the need for the BLOCKDATA subprogram.that existed in

previous versions of the model. Three modules replace the function of the BLOCKDATA

subprogram, but the use of modules has significant ramifications beyond the advantages
mentioned above. Previous versions of the code, in an attempt to reduce memory space,
purposely allowed some common blocks to overflow into adjacent memory. This scheme worked
because the data in the overwritten areas of memory were no longer needed by the program at
the point in the execution of the program when they were overwritten. This technique had worked
because the common blocks were in a specific and necessary order in the BLOCKDATA
subprogram. The effect of the BLOCKDATA subprogram was to set aside a block of virtually
contiguous memory large enough to contain all the elements in the BLOCKDATA subprogram.
However, this was based on the assumption of static memory allocation, i.e., this block of
memory was set aside when the program was initially loaded into memory and remained the

same until the program completed.

This logic prevented the use of the more modern and efficient technique of dynamic memory
allocation, thereby requiring the use of the ‘/static’ option on most compilers. Furthermore, it
required that programmers understand the flow of the program if the ordering and dimensioning
of the common blocks were to be changed. In addition, the use of the helpful ‘array bounds
checking’ feature in most debuggers could not be used because the dimensions of many arrays
were purposely being exceeded. Additional global variables (to be detailed below) and the use of
allocatable variables (to be explained in more detail below) have eliminated the need for the
overwriting of any arrays. With individual global variables in the module replacing common
blocks, the need for the ordering of the common blocks and hence the variables within them is no
longer relevant. The computer operation system can make optimal use of dynamic memory
allocation (see caveat below regarding the referencing of array elements), programmers need no
longer to be concerned about the ordering of existing or new variables in the code, and the use of

the ‘array bounds checking’ feature in many debuggers can now be used.

2.1.2 Dimensions of Arrays Set by Parameters
The dimensions of all global arrays are set in three modules and are enforced consistently

across all subroutines that reference the modules during compilation. Many of the dimensions
are set by parameters that are also typed and defined in one of the modules, usually in
MODULE_STANDARD. There are, however, a number of arrays that are still explicitly
dimensioned. To improve the ease of changing code size limitations, these arrays should

eventually be dimensioned with parameters.

2.1.3 Elimination of COMMON /TEMPVS/
The use of the named common block /TEMPVS/ was eliminated from all subroutines
throughout the program. This named common block served several functions in Version V.1 of

the code. In some subroutines it was used to provide scratch space for local variables used only
in that subroutine. In other places it was used to act as a named common block that stored
information that was shared by several subroutines. This shared function use was used in

several places in the code but by different groups of subroutines.

The original intent df using /TEMPVS/ was to reduce the memory requirements of the early
versions of the ATB Model in the days when core memory was very limited. The trade-off was
that it made understanding and modifying the code very difficult. With the advent of newer
machines with much larger memories, the cost of using /TEMPVS/ came to vastly outweigh its
benefits. Because variables varied in both size and type between different subroutines that used
[TEMPVS/, memory alignment errors and problems occurred on many machines. Dynamic
memory allocation was not possible and the overall coding scheme used for [TEMPVS/ was
neither Fortran 77 nor Fortran 90/95 compliant. Numerous problems resulted from previous
coding modifications that did not properly account for how and where data were shared between
the subroutines using /TEMPVS/. Furthermore, it reduced the modularity of the code and made it
much more involved to modify any of the subroutines that used /TEMPVS/.

The elimination of /TEMPVS/ from a subroutine or group of subroutines was handled in
several different ways, depending on what function or functions /TEMPVS/ served in that
subroutine. Where /TEMPVS/ was used to act as scratch space for local variables for a
subroutine, these variables were made into local variables, and in most cases given the same
name as before, or given the same name with the suffix “_LCL” added if the name confiicted with

an existing global variable of the same name.

When /TEMPVS/ was used to share data between several subroutines, the elimination of
/TEMPVS/ was much more difficult and was effectively accomplished in two stages. First, a new
named common block was created for each group of subroutines that shared data. Once the

program was debugged, all of the newly formed common blocks were eliminated and the
variables they contained were made into global variables defined in MODULE_STANDARD.
Usually the original name of the variable was kept as the global variable. However, when there
was a conflict with a previously existing global variable with the same name, the variable had a
suffix appended to it. As an example, the newly created global variables from the /TEMPVS/
variables associated with the harness belt subroutines had the suffice ©_ HRN” appended to their
original name if their names conflicted with existing global variables. In several cases, different
subroutines sharing variables had referred to them by different names. To help previous users of
the code track the changes made to the code, the rename option of the USE statement was used
rather than the cleaner approach of renaming the variables within the involved subroutines. In a
few instances where data were passed between subroutines using /TEMPVS/, and if the data
were not large arrays, the variables were passed as arguments between the two subroutines.

Though this approach increased the memory requirements for the program, the benefits
gained far outweigh the increased memory requirements even if static memory allocation is
assumed. The new form of the code permits the use of dynamic memory allocation, so the
overall increase in memory requirements many not be substantial, and depending on how

memory is handled, might actually decrease.

Many comments are provided in MODULE_STANDARD detailing these changes, with the
global variables marked off in sections by the intermediate named common block names. These
intermediate names are provided below, with the names of the subroutines from Version V.1 that
had shared data via /TEMPVS/. it is repeated that these common blocks no longer exist and
were used only to help in the fransition of the code to its present form. Their names are provided -
below only to help former users of the code to understand how the code was modified. A listing
of all the global variables that were associated with each of the temporary, intermediary, named
common blocks can be found in the comments in MODULE_STANDARD (Appendix A.1).

Temporary Intermediary

Named COMMON Version V.1 Subroutines Sharing Data
/AIRBAG_TEMPVS/ AIRBAG, AIRBGG

/BELT_TEMPVS/ ‘ BELTG, BELTRT

/CINPUT_TEMPVS/ CINPUT, FDINIT, FINPUT, HINPUT, KINPUT
/DAUX_TEMPVS/ DAUX11, DAUX12, DAUX22, DAUX31, DAUX32, DAUX33
/HEDING_TEMPVS/ HEDING, POSTPR

/HRN_TEMPVS/ HPTURB, HBPLAY, HBELT, HSETC

/PLELP_TEMPVS/ HYEST, HYLPX, HYNTR, PLEDG, PLELP, PLSEGF, SEGSEG

NVIN_TEMPVS/ VINPUT, VINO12, VINO34, VSPLIN, VINTST

2.1.4 Elimination of Implicit Typing of Variables

The IMPLICIT NONE statement was included in all subprograms throughout the program.
This forced all variables to be explicitly typed, rather than using default typing or the IMPLICIT
typing statements in previous versions of the code. Implicit typing of variables is generally
considered to be a poor programming technique that can result in multiple programming errors.

As explained in Section 2.1, all global variables were explicitly typed in the modules, with the

compiler enforcing this typing in any subroutine that used a global variable from the module. All
local variables in each subroutine were also explicitly typed. The advantages of local explicit
typing are twofold. First, it reduces programming errors by flagging any variables whose names
were mistyped rather than setting the value of the variable to 0. Second, it makes it clear to the
programmer what local variables are used within the subroutine by providing a list of all local
variables used in the subroutine at the beginning of each subroutine.

2.1.5 Elimination of Hollerith Characters
All Hollerith edit descriptors were replaced by character string edit descriptors, delimited by
single quotes, in FORMAT statements throughout the code. Hollerith edit descriptors are an

outdated, error-prone edit descriptor type that is not supported in Fortran 95.

2.1.6 Replacement of REAL Variables with CHARACTER Variables
Because the ATB Model code was developed before the CHARACTER type variable was

available in Fortran, the program used single and double precision variables to handle character

information. The use of single and double precision real variables to represent character
information resulted in awkward, difficult to follow and error-prone code. All instances of this have
been eliminated, with only CHARACTER type array variables used to handle character
information. The following global variables were changed to type CHARACTER. Note that the
[TEMPVS/ common block variables differ by subroutine. Variables denoted by a “+” pertained to
subroutine HEDING in Version V.1. Variables denoted by a “*” pertained to subroutines CINPUT,
FDINIT, FINPUT, HINPUT and KINPUT in Version V.1. Several other minor character related
changes were associated with the elimination of the /TEMPVS/ common blocks but are not
explained here. In addition, several subroutines have character related changes that are specific

to that subroutine and are not explained here.

COMMON BLOCK Variable(dimension) Old Type New Type(dimension)

JCNSNTS/ UNITL REAL*S CHARACTER*8
" o UNITM REAL*8 CHARACTER*8

“ “ UNITT REAL*8 CHARACTER*8

/INTEST/ REGT(4*MAXSEG) REAL*8 CHARACTER*8(4*MAXSEG)
“ “ SEGT(4*MAXSEG) REAL* CHARACTER*4(4*MAXSEG)
ITEMPVS/+ AHED(5,2) REAL*4 CHARACTER*20(2)
“pooo AHEAD(5,20) REAL*4 CHARACTER*20(20)
“yooow BLANK REAL*4 CHARACTER*4

“p oo GHED(2) REAL*4 CHARACTER*4(2)

“p oo HEADJJ(4,2) REAL*8 CHARACTER*32(2)
“gow HEADR(20) REAL*8 CHARACTER*8(20)

“p oo HEDJ(4,2) REAL*8 CHARACTER*32(2)

“w o JTITLE(5,51) REAL*4 CHARACTER*20(51)

“w o KTITLE(31) REAL*4 CHARACTER*4(31)

“p oo PHED(5) REAL*4 CHARACTER*4(5)

“p oo RHED(3) REAL*8 CHARACTER*8(3)

ITITLES/ DATE(3) REAL*4 CHARACTER*12

“ “ COMENT(40) REAL*4 CHARACTER*160

“ “ VPSTTL(20) REAL*4 CHARACTER*80

“ “ BDYTTL(5) REAL*4 CHARACTER*20

“ “ BLTTTL(5,8) REAL*4 CHARACTER*20(8)

“ “ PLTTL(5,MAXPLN) REAL*4 CHARACTER*20(MAXPLN)
“ BAGTTL(5,6) REAL*4 CHARACTER*20(6)

“ “ SEG(MAXSEG) REAL*4 CHARACTER*4(MAXSEG)

“ “ JOINT(MAXJNT) REAL*4 CHARACTER*4((MAXJNT)

2.1.7 Use of Longer Variable Names
The use of longer variable names to aid in the understanding of the code was done only very

sparingly for two reasons. First, to make it less confusing for readers of the code trying to
understand the differences between Version V.1 and Version V.3. Second, it is hoped that future
versions of the code will make use of structures, making any renaming of the variables for this
effort short-lived because the use of structures would necessitate a full-scale renaming effort
throughout the eqtire code. Longer variable names were used primarily for new variables that
were introduced to the code in this effort. The other significant use of longer variable names was
to append the suffix “_LCL" to local variable names in subroutines where the local variable
originally had the same name as a global variable but where the global variable was not scoped
(referenced) by the subroutine. Since these subroutines did not scope the global variable, there
was no conflict between the local variable and global variable of the same name. However, the

use of the same name for a global and local variable is a poor programming technique and has a

high potential for error.

2.1.8 Use of the INTENT Statement

All new subroutines made use of the INTENT statement, i.e. INTENT(IN), INTENT(OUT),
or INTENT(INOUT). The INTENT statement explicitly specifies how an argument that is passed

to the subroutine or function is to be used by the subprogram. INTENT(IN) means that the
argument may only be used, it may not be altered. INTENT(OUT) means that the argument is
defined within the subprogram. No value is available for it upon entrance into the subprogram.
INTENT(INOUT) means that the argument may have either or both characteristics. The
advantage of the specifying intent is that it makes the usage and purpose of the passed
arguments clearer to readers of the code, hence aiding in understanding of the code.
Furthermore, the intent of each argument is checked during compilation and any inappropriate
use of the argument is flagged as an error. This forces the arguments to be used as intended

within that subprogram.

2.1.9 Elimination of Arithmetic IF Statements

All arithmetic IF statements throughout the code were replaced with IF-THEN constructs.
The use of the arithmetic IF statement makes it hard to follow the logic of a subroutine and can
lead to coding errors. Furthermore, the use of the arithmetic IF statement is not supported by

standard Fortran 95.

2.1.10 Elimination of Nested DO’s Terminating on the Same Statement

In keeping with modern coding practices, and Fortran 90 guidelines, all nested DO loops
throughout the program that terminated on the same statement were replaced with a DO
construct that had each DO loop terminating on a unique statement. This practice makes the

code easier to follow and more modular in nature.

2.1.11. Proper DO Termination Statements

All DO loops throughout the program that did not terminate on either a CONTINUE statement
or an END DO statement were modified to do so. This again is in keeping with modern coding
practices, reduces the potential for logic errors, and makes the code more modular.

2.1.12. Use of END DO Statements
Many numbered DO loops throughout the program were replaced with DO-END DO

constructs, with proper indentation, to make the code easier to follow and more modular in
nature. Long DO loops (effectively DO loops whose code would span more than about a full
screen of source listing) were left as numbered DO loops to make it easier to follow the logic of

the DO loop across one or more pages (screens) of source code listings.

2.1.13 Arrays Initialized as Obijects

Scattered throughout Version V.1 of the code are instances where multiple, nested DO loops
are used to initialize multi-dimensional arrays. In selected locations where the entire array was
being initialized, the object oriented nature of Fortran 90 was utilized, e.g. the multi-dimensioned
global array A was initialized to 0 by the simple statement A = 0.0. This avoids the need for

11

knowing the number of dimensions and the span of the array within the subroutine. The
dimension and size of the global array can be modified in the module, yet there is no need to
modify DO loop indices within the subroutine. The usefulness of this feature is diminished if only

parts of the array are being defined and consequently this feature was not applied in these cases.

2.1.14 Use of Allocatable Arrays
Allocatable arrays are arrays in Fortran 90/95 that are designated in the beginning of the

subroutine as being able to utilize dynamic memory allocation. When the array is used in the
subroutine, memory is allocated for it. When the array is no longer needed, memory can then be
deallocated, making the memory again available to the system. In general, the present structure
of the ATB Model prevents the efficient use of this feature. There were, however, two locations

within the code where this feature was used.

in Version V.1 of the ATB Model the large named common block, /TEMPVS/, was shared by
the subroutines associated with vehicle motion. Several arrays used /TEMPVS/ to store the large
amounts of vehicle input data needed for the six-degree-of-freedom spline-fit option (option 4).
Since these data are needed only to compute the vehicle motion at the beginning of the
simulation, the relevant arrays are made allocatable in Subroutine VSPLIN. The arrays are then
allocated when the subroutine is entered, used only in that subroutine and then deallocated once
the vehicle motion is computed. Upon deallocation, the memory utilized by these large arrays is

then made available to the system for other uses.

An allocatable array is also used in Subroutine POSTPR to store tabular time history data
used in the computation of injury criteria. These data are then passed to Subroutine HICCSI to
perform the actual calculation of the injury criteria. Though the amount of memory saved by the
use of an allocatable array in Subroutine POSTPR is not that substantial, an allocatable array

was used in here to serve as another example of how allocatable arrays could be used in the

ATB Model code.

2.1.15 Variable Logical Unit Numbers

All references to explicit logical unit numbers were replaced with integer variable names.
This feature allows easy redirection of program input and output if logical unit number conflicts
arise when the ATB Model is linked with other programs, such as graphics or finite element
programs. The logical unit numbers are defined in MODULE_STANDARD and are listed below.

Variable Name Function Current Value
LULIN list-directed standard input unit 3
LUAIN fixed-format standard input unit 5
LUAOU standard output unit 6
LUTP8 unformatted file for postprocessing 8

1

LUVIEW graphics output unit

LUFLEX flexible segment input 11

LUTERM_IN terminal/console input 5

LUTERM_OUT terminal/console output 0
2.1.16 Use of Structures

The coding associated with the control of the printing of individual tabular time history output
by NPRT(18) on Card A.5 was completely revised. A structure was created for each type of
tabular time history in MODULE_STANDARD using the user defined derived type TTH_DESCRIP
which contained three components, BEGIN_LUNUM, END_LUNUM, PRINT. BEGIN_LUNUM is
the beginning logical unit for the tabular time history, END_LUNUM is the last logical unit number
for the tabular time history and PRINT is a logical variable controlling whether the tabular time
history is to be printed. The value of PRINT is deduced from the value of NPRT(18) and set in
Subroutines LUNUM_HCARDS and LUNUM_FORCES. The use of this structure makes the
code more modular and easier to follow. An additional structure of derived type OUTPUT_TIMES
was created for use with the outputting of simulation data. It is defined in MODULE_STANDARD
and its associated components can found listed in the code in Appendix A.1.

A structure, of derived type SEGMENT, was created to encompass all the parameters
associated with the segments. It is defined in MODULE_STANDARD and its associated
components can found listed in the code in Appendix A.1. Comments contained within the code
show the association between the variable names previously used in the code and the
corresponding component names in the structure.

A structure, of derived type JOINT, was created to encompass all the parameters associated
with the various types of joints available in the model. It is defined in MODULE_STANDARD and
its associated components are listed in the code in Appendix A.1. Comments contained within
the code show the association between the variable names previously used in the code and the
corresponding component names in the structure. Not all joint parameters have been
incorporated into the JOINT structure. Suggested names for these parameters have been
included as con';ments in the source code, but have not yet been implemented.

2.1.17 Additional Comments
Additional comments were added throughout the code to improve the readability of the code.

A limited number were added to existing subroutines, with ample comments included in all new
subroutines. To further improve code readability, all comments throughout the code were
changed from upper case to lower case with, in most cases, grammatically correct sentence
structure and capitalization. All program variable names were fully capitalized to further aid in

understanding of the code.

13

2.2 Additional Global Coding Changes
Several global coding changes were made in addition to the task dictated global changes.
These changes provide additional features and enhancements to the ATB Model.

2.2.1 Renamed lL.ocal Variables Conflicting with Global Variables

All local variables having the same name as a global variable (variables contained in
MODULE_STANDARD, MODULE_FLEXIBLE, or MODULE_WATER) were renamed, even if the
subroutine containing the local variable did not scope any of the modules. In general, though not
always, the new variable name was created from the original variable name with the suffix “_LCL”
appended. This was done to maintain ease in understanding the code for programmers all ready
somewhat familiar with the code. The variables were renamed to avoid scoping problems that
could arise should the subroutine in question scope one of the modules with the USE or USE
ONLY statements. If the name had not been modified and the USE statement included in the
subroutine, what originally was a local variable would now scope to the global variable, most
likely unnoticed by the programmer. Hence any modifications to the local variable would now be
felt globally, possibly ‘resulting in unforeseen consequences throughout the code. If the
programmer mistakenly assumed that the local variable was referring to the global variable of the
same name and purposely included the local variable in a USE ONLY statement, the same

problems could occur.

2.2.2 Elimination of GO TO Statements
All GO TO statements were eliminated, the most time-consuming and labor intensive of any

individual global program modification. The GO TO statements were replaced with modern
constructs, usually with IF-THEN blocks. The justifications for these changes were many-fold.
The GO TO construct has a very high potential for coding and/or logic mistakes during future
modifications to the code. This type of construct is very difficult to follow; it makes the code very
hard to read and is in general strongly discouraged by modern program practices. The IF-THEN
biock construction, without specific label numbers and proper indentation makes the code more

modular, easier to read and much easier to debug. It also facilitates future coding changes.

However, the replacement of the GO TO construct with more modern constructs, such as the
IF-THEN block, might slightly alter the underlying assembly language after compilation, as was
found during previous modifications to the code[9], especially when different levels of optimization
are used. This slightly different flow of the program at the machine level could result in slightly
different results because of numerical round-off and finite machine precision. Very small
differences were observed, as explained in Section 3.4, which may be partially attributable to

these coding changes.

2.2.3 Segregated BSF Array
The global array BSF, which in Version V.1 had been stored in common block /FORCES/,

was used to store data for the tabular time history outputs. It contained data for the simple belts,
the harnesses, and the spring dampers. The data were stored sequentially in the array. The
counter variable NBSF was used to keep track of data storage across subroutines. However, the
option to individually limit the force-related tabular time history data (Card A.5, NPRT(18)) had an
error that would not print the spring damper data out properly if both harness belts and spring

dampers were used in a simulation but only the spring damper output was desired.

To correct this error and improve the modularity of the code, the array BSF was replaced in
the module MODULE_STANDARD and throughout the code with three individual arrays,
HARNESS_FORCE for the harness data, BELT_FORCE for the simple belt data and
DAMP_FORCE for the spring damper data. In addition, parameters were used to dimension
arrays for the number of spring dampers and simple belts permitted in a simulation. The
computed data are always stored in the respective arrays if spring dampers, harnesses or simple
belts are specified in a simulation, even if the data output is not desired. It is felt that this
approach is more consistent with the general logic of the program and provides more flexibility for

future code modifications.

2.2.4 Use of KIND Specification Throughout Code
Fortran 90 provides a new feature, the specification of the KIND of a variable. Each intrinsic

type of variable can be given more than one type of representation, such as single and double for
type REAL and INTEGER*2 and INTEGER*4 for type INTEGER. The representation of a
variable (the number of bits used internally to represent a certain variable type) determines the
level of precision of the stored data. Therefore the KIND of an intrinsic type affects the precision
of the data being manipulated by the code. Fortran 90 also provides a number of intrinsic
functions that allow the programmer to assess and control the numeric precision of a machine.
The intent of these new features and additional intrinsic functions is to allow the programmer to
include in the program code that will control the numerical precision of the calculations across
platforms and operating systems. This ensures that simulations run with identical input will
produce essentially identical output for different operating environments, an extremely useful and

necessary feature for numerically intensive codes such as the ATB Model.

As a big first step in allowing for the control of the ATB Model’s numerical computations, all
variables through the code were explicitly given a KIND. A PARAMETER was specified for each

of the types used through the code, as shown below.

ICHAR_STD
INTEGER_STD

1 1 character of this type is contained in 1 byte
4 1 integer of this type is contained in 4 bytes

15

IREAL_HIGH =8 1 real of this type is contained in 8 bytes
IREAL_STD =4 1 real of this type is contained in 4 bytes
LOGICAL_STD =4 1 logical of this type is contained in 4 bytes

The use of LOGICAL*1 was eliminated throughout the code as a nonstandard extension of
Fortran 90/95 and replaced with LOGICAL_STD (LOGICAL*4). The majority of the code currently
uses double precision computations. However, if one desired to change the use of double
precision to single precision, only IREAL_HIGH need be changed from 8 to 4 and the code
recompiled. Probably of more interest to most users however, is the use of the quad precision
option on some machines (this option is not currently implemented in the Fortran compiler for
Intel machines). All that is needed to use the quad precision is to change IREAL_HIGH from 8 to
16 on such machines, recompile the code and computations and data handling would then be

properly done in quad precision.

2.2.5 Use of Generic Intrinsic Subroutines

Fortran 90 provides intrinsic subroutines that are generic in nature. These subroutines are
effectively interface subroutines that will call the proper underlying subroutine based on the type
of the argument passed to the generic subroutine. An example is the generic routine to compute
the sine function. The generic call is SIN(X). If X is real it will call the actual SIN(X) subroutine
for real values. If X is double precision, the actual subroutine DSIN(X) will be called and if X is

complex, the actual subroutine CSIN(X) will be called.

The advantage of generic intrinsic subroutines is that one can change the KIND of the
variables, as explained in Section 2.2.4, without needing to go through the code and change the
name of each intrinsic subroutine. Since the use of the KIND option was implemented throughout
the code, all calls to intrinsic subroutines throughout the code were changed to generic intrinsic
calls. Listed below are all the intrinsic subroutine names in Version V.1 and the generic name

that was used to replace it.

Al F90 V1 F90
DABS ABS DSIN SIN
DACOS ACOS DSQRT SQRT
DASIN ASIN DTAN2 ATAN2
DCOS Ccos DTANH TANH
DEXP EXP IABS ABS
DLOG LOG IDINT INT
DMIN1 MIN MAX0 MAX
DSIGN SIGN MINO MIN

In addition, the intrinsic function FLOAT is not supported by Fortran 90 and was replaced by
the intrinsic function REAL. The intrinsic function DBLE was also replaced by the intrinsic
function REAL to make use of the KIND specification permitted in the function REAL but not in

the function DBLE.

16

2.2.6 Listing of Files Used By Simulation

The filenames and full path of all the input and output files used by a simulation are now
outputted to the .AOU file. In addition, the type of the tabular time history contained in a file is
also listed by providing the range, i.e. filename.txxx through filename.tyyy, where xxx is the
starting number of that type of tabular time history and yyy is the ending number of that type of
tabular time history. This additional data provide a record of run results and aids in the use of the
multiple tabular time history option. New subroutines LUNUM_FORCES, LUNUM_HCARDS and

OUTPUT_LUNUM were added to provide this feature.

2.2.7 Time and Date Stamping

The feature to time and date stamp the start and end of the run was provided using the
Fortran 90 standard intrinsic subroutine DATE_AND_TIME. Hence this option will work on any
Fortran 90 compliant machine. The new subroutines CONVERT_TIME, DATE_TIME and
GET_MONTH_NAME were added to support this feature.

2.2.8 Subroutine Specific CPU Calculations

Subroutines ELTIME and L_LTIME were modified to work correctly, i.e. provide a tally of the
CPU time used by selected subroutines. (In older versions of the code, L_LTIME had been
named LTIME but it was renamed to avoid conflicts with Unix intrinsic functions on some
machines that had the same name.) Two versions of this change were developed, one which

works on Fortran 95 compliant machines and calls the Fortran 95 intrinsic subroutine CPU_TIME
and one which provides slightly less information and works on all Fortran 90 compliant machines
using the Fortran 90 intrinsic subroutine DATE_AND_TIME. The user selects which version of
the subroutine is linked with the code depending on.the compiler used. The COMPAQ Visual
Fortran for the PC is Fortran 95 compliant. The MIPSpro F90 compiler for the Silicon Graphics
R10000 chip machines is F90 compliant.

2.2.9 Long Subroutines Broken Up by Function

Many of the excessively long subroutines were broken up into several smaller subroutines.
The smaller subroutines were more modular in nature, with each usually performing a specific
task. This is in keeping with modern coding practices, makes the code much easier to
understand and follow, helps to reduce coding errors and increases the flexibility of the code for
future coding modifications. An explanation of each new subroutine is given in Section 2.3. An

overview of how the original subroutines were broken up is given below.

17

BINPUT -
INPUT_BCARDS
INPUT_FLEX
INPUT_JOINTS
ouTPUT_JOINTS

DAUX-
DAUX
DAUX_SETUP

DAUX22
DAUX22_SETUP

DINTG-
DINTG
DINTG_BACKUP
DINTG_HALF

EJOINT-
EJOINT
EJOINT_TORQUE

EQUILB -
EQUILB
EQUILB_SOLVE
EQUILB_SOLVE_SUB
INPUT_EQUILB

EVALFD-
EVALFD
EVALFD_INTEGRAL
EVALFD_POLY
EVALFD_TAB

FINPUT-
INPUT_AIRBAG_FORCE
INPUT_BELT_FORCE
INPUT_FCARDS
INPUT_GLOBALGRAPHIC_FORCE
INPUT_PLANE_FORCE
INPUT_SEG_SEG_FORCE
INPUT_WIND_FORCE

FRCDFL-
FRCDFL
FUNC_RATE_DEP

FSMSOL-
FSMSOL
FSMSOL_STOP

HBPLAY-
HBPLAY
HBPL/}Y_POINTS

HPOINT_DROP

HEDING -
HEDING
HEDING_ACTUATORS
HEDING_ANG_DISPL
HEDING_BODY_PROP
HEDING_FORCES
HEDING_HCARDS
HEDING_JNT_PARM
HEDING_JOINT_FORCES
HEDING_WATER
HEDING_WIND

HPTURB-
HPTURB
HPTURB_SETUP

HSETC-
HSETC
HSETC_SUB

HYLPR-
HYLPR
HYLPR_PIVOT

INTERS-

INTERS
INTERS_SOLVE

KINPUT-
INPUT_JOINT_TORQUE

INPUT_WIND

MAIN_ATB
INPUT_ACARDS
INITIALIZE
INTEGRATE_TIME
MAIN_ATB

OUTPUT -
INPUT_H10_CARDS
INPUT_H11_CARDS
INPUT_H1_H3_CARDS
INPUT_H7_CARDS
INPUT_HCARDS
LUNUM_FORCES
LUNUM_HCARDS
OUTPUT
OUTPUT_BODY_PROP
OUTPUT_FORCES
OUTPUT_H9_CARDS
OUTPUT_HCARDS
OUTPUT_LUNUM
OUTPUT_SETUP

POSTPR-
POSTPR
READ TAPE_8

SINPUT-
INPUT_BELTS
INPUT_CONSTRAINTS
INPUT_DCARDS
INPUT_ELLIPSOIDS
INPUT_FORCE_TORQUE
INPUT_PLANES
INPUT_SPRING_DAMPERS
iINPUT_SYMMETRY

UPDATE-
UPDATE
UPDATE_CONSTRAINTS
UPDATE_EULER_JOINTS
UPDATE_JOINTS

UPDATE_TAB

VISPR-
VISPR
VISPR_TORQUE

WATINP-
INPUT_PER_FLOAT_DEV
INPUT_WATER
INPUT_WATER_ELLIPSOIDS
INPUT_WATER_OUTPUT
INPUT_WAVES
INPUT_

WINDY-
FORCE_TORQUE
WINDY
WIND_AREA
WIND_GRID

UPDFDC-
DEF_NEW_CUBIC
DEF_NEW_QUADRATIC
UPDATE_FRC_DEF_CURVE

2.2.10 Percentage Completion of Run

The percent of completion of a run is now output to the screen, as is the actual number of
steps completed out of the total number of steps in a run. This provides the user with some idea
of the time remaining to complete the simulation. Furthermore, by providing continuous output,
the user can see whether very long runs have hung the system or are actually just taking a long

time to complete.

2.2.11 Time Windowing of Output
Over time, the number of allowable plane-segment contacts, segment-segment contacts and

many other types of contacts has increased substantially. Consequently, the number of potential
tabular time histories has grown substantially. In addition, longer simulation times are being used
for many simulations. The resultant disk space requirement for long runs, with many specified
contacts, has grown enormously. Although there are several options to limit the amount of output
by limiting output to specific contacts, there are times when one may want all the contact output,
but only for a specific period of time during the simulation. This may occur when debugging
coding changes or if a spike in a segmental acceleration shows up but the cause is hard to

determine.

An option has been added to specify time windows that can limit the output from the tabular
time histories, the AOU output, and the graphics data output. The user specifies a beginning time
and ending time for when the data are to be printed. There can be up to three time windows

19

specified, which can also overlap. These time windows can be applied individually to any of thec
three types of output, or can apply to any combination of output. The structure OUTPUT_TIMES
was added to the code to perform this function. The effect of the time windows is to limit the
output that would normally be produced using the currently existing control mechanisms, such as
the NPRT array from Card A.5 [10,11]. These existing features continue to function as
previously, but the output they generate is limited to being printed only during the specified time
windows. A new card, Card A.6, controls this output. NPRT(34) from Card A.5 flags the use of
time windowing and the need for Card A.6. If NPRT(34) is blank or 0, no time windowing is
desired, hence Card A.6 is not required. This allows previous inputs to be used without
alteration. Only if time windowing is desired is there a need to alter the input deck.

If NPRT(34) is greater than 0, its value specifies how many time windows are desired. The
current limit is 3. There must be one Card A.6 for each time window specified. The format of
Card A.6 is FORMAT (A1, 1X, A1, 1X, A1, 1X, F10.3, 1X, F10.3). The input statement is READ
AP, AT, AV, TS, TE, where AP is the control flag for Subroutine PRINT output, AT is the control
flag for the tabular time histories and AV is the control flag for the graphics data output. An “f’ or
“F” in the AP, AT or AV field means that the time window does not apply to the respective type of
output. A “t” or “T” means that the time window does apply to the respective type of output. TS is
the start of the time window, in seconds, and TE is the end of the time window in seconds. The

times are absolute times, where time 0 is the beginning of the simulation.

2.2.12 Renamed Subroutines
The following Version V.1 subroutines were renamed with longer subroutine names to clarify

their purpose. No significaht changes were made to these subroutines, other than the general

changes that were made to all the code that are explained in detail above.

ADDMAS WATER_ADDED_MASS LTIME L_LTIME
AIRBG1 INPUT_AIRBAGS ROBINP INPUT_ROBOTICS

CINPUT INPUT_FUNCTIONS UPDFDC UPDATE_FRC_DEF_CURVE
DRGCHK WATER_DRAG_CHK UPDPFD UPDATE_PFD

ELTIME E_ELTIME USER ACTUATOR_TORQUE

ETA WAVE_HEIGHT VINPUT INPUT_VEHICLE

FILES INPUT_FILES WATHED HEDING_WATER

FXINPT INPUT_DEFORM WATINP INPUT_WATER

HINPUT INPUT_HARNESS WATOUT OUTPUT_WATER

INITAL NPUT_INITIAL_CONDITIONS WATSET LUNUM_WATER

INPROJ INPUT_PROJANG WAVEL WATER_PNT_VELOCITY
INTANG INPUT_ORIENT WELFOR WATER_ELLIP_FORCE

INTLIN INPUT_LINEAR WFORCE WATER_FORCE

2.2.13 Modifications Relevant to Free Form Source Code
All comments throughout the code were prefaced with a “IC” instead of a “C”. In addition, all

continuation lines were denoted by a “&” instead of a “*” or other character. In free source form,
there are no restrictions limiting statements to specific positions on a Fortran line, the blank
character is significant and may be required to separate lexical tokens, and the exclamation mark
(1) is used to indicate the beginning of a comment that ends with the end of the line. If a
continuation line is to follow, an “&” must be used at the point in the current line where the
continuation line is to start. The rules for fixed form source code limit Fortran statements between
positions 7 and 72, blanks are not significant, a “C” or “*” in position 1 indicates a comment, and
any character other than a blank or 0 in position 6 indicates a continuation line.

The use of the free source form is not recommended because to the author it seems to make
the code harder to read. However, it is possible to use a form of the source code that is valid and
equivalent for either free source form or fixed source form. To do so requires that the following

rules be followed in the source code [5, page 77].

a) Limit labels to positions 1 through 5, and statements to positions 7 through 72 — this
was maintained throughout the code.

b) Treat blanks as significant — should apply throughout the code.

c) Use the exclamation mark (1) for a comment, but don’t place it in position 6. Do not
use C or * forms for a comment — this was done throughout the code.

d) To continue statements, use the ampersand in both bosition 73 of the line to be
continued, and in position 6 of the continuation. Positions 74 to 80 must remain blank
or have only a comment there. Positions 1 through 5 must be blank. This was
followed throughout the code, except that an ampersand was not placed in position
73.

To complete the process to make the code valid and equivalent for either free source form or
fixed source form requires only that all statements that are continued need an ampersand in

position 73.

2.2.14 STOP Statement Messages

The use of mixed case and the use of proper grammatica! structure were applied to most
STOP and warning messages throughout the code. These changes make it easier to read and

understand these somewhat cryptic warnings and messages.

21

2.2.15 Addition of Blanks
A tremendous number of blanks were inserted in the Fortran part of the statements

throughout the code to make the code much easier to read. The blanks were inserted in

accordance with the rules for blanks in free source format code.

2.3 New Subprograms
Provided below is a description of all the new subprograms added in Version V.3 of the ATB
Model. Extensive comments are also provided in the source code of each subroutine explaining
in more detail the function of the subprogram. A subprogram call and caller sequence was
omitted because this information is now readily available in the source browsers commonly
provided with many of the new developer environments. These source browsers also provide
information on the definitions and instances of references of all variables within a source code.

Subroutine CHECK_COMMENT - This subroutine parses the input records of either the
.ain or .lin standard input files to determine if the current record contains comments or input data.

The “#” symbol in the first column of a record denotes that record as a comment.

Function CHECK_HIGH_VALUE - This function checks the value of the high precision
value passed to it. If it is smaller than or equal to the smallest single precision value, the function
returns a value of single precision 0. If it greater than the smallest allowable single precision
value, the function returns the single precision equivalent of the passed double precision value.
This function is used in the process of outputting double precision data as single precision values

to the Unit1 output file used for simulation graphics.

Subroutine CHECK_ROT_SEQ - This subroutine is used to check the validity of a
rotation sequence. An example would be the rotation sequence 1-1-3, where “1” and “3” refer to
the axis about which the rotation is performed. This is an invalid sequence, since there are two
sequential rotations about the same axis. The subroutine would return a value of “false” for this

sequence, indicating that it is an invalid sequence.

Subroutine CHECK_ROTATION_ORDER - This subroutine checks whether the rotation
order of the axes of rotation given for the initial rotation angels for the JPASS segment specified

by the G.3 card specify a proper rotation.

Subroutine CONVERT_TIME - This subroutine is called by Subroutine DATE_TIME to
convert the elapsed CPU time for a simulation from total seconds to seconds, minutes, hours and

days.

22

Subroutine DATE_TIME- This subroutine uses intrinsic Fortran 90 and Fortran 95 calls
to get the starting and ending times for a simulation. It also computes the elapsed CPU time for

the run.

Subroutine DAUX22_SUB - This subroutine performs a subset of the computations
done by Subroutine DAU22 to reduce the system matrix that is solved to compute the linear and

angular accelerations and constraint forces of the simulation.

Subroutine DAUX_SETUP - This subroutine was created from Subroutine DAUX and
sets up the initial values of the A & B arrays and U & V vectors in which the U1 and U2 arrays are

modified by the contact and joint forces.

Subroutine DEF_NEW_CUBIC - This subroutine was created in most part from
Subroutine UPDFDC of Version V.1. It defines a new cubic function when Subroutine UPDFDC

detects the proper conditions in the force function.

Subroutine DEF_NEW_QUADRATIC - This subroutine was created in most part from
Subroutine UPDFDC of Version V.1. It defines a new quadratic function when Subroutine
UPDFDC detects the proper conditions in the force function.

Subroutine DINTG_BACKUP - This subroutine computes the backup entry point of the
program integrator if H, the step size in the integrator, has been halved. It was created from
Subroutine DINTG.

Subroutine DINTG_HALF - This subroutine was created from Subroutine DINTG and is
called by Subroutine DINTG_BACKUP if a convergence test fails. It outputs appropriate error
messages and modifies the value of H, or stops the program if the converge problem is fatal.

Subroutine EJOINT_TORQUE - This subroutine computes the torques acting on an
Euler joint and adds them to the U2 array. It was created from Subroutine EJOINT.

Subroutine EQUILIB_SOLVE - This subroutine adjusts the initial input position based on
the parameters supplied Cards G.2 and G.3 such that the initial normal contact forces are equal
to either the supplied values or those computed by the constraint forces. It was created from
Subroutine EQUILB.

Subroutine EQUILB_SOLVE_SUB - This subroutine outputs error messages associated
with the attempts of Subroutine EQUILB_SOLVE to find an equilibrium solution of the body at

23

time zero. If the solution is successful, it sets the linear position and orientation of the variable

being solved for to the initial position and orientation of that segment. It was created from

Subroutine EQUILB.

Subroutine EVALFD_INTEGRAL - This subroutine computes the integral of a function
from DO to D. It was created from Subroutine EVALFD.

Subroutine EVALFD_POLY - This subroutine computes the 5™ order polynomial or
derivative of the 5" order polynomial of a function. It was created from Subroutine EVALFD.

Subroutine EVALFD_TABLE - This subroutine evaluates a tabular function. It was

created from Subroutine EVALFD.

Subroutine FORCE_TORQUE - This subroutine was created in most part from

Subroutine WINDY of Version V.1. It computes the forces and torques associated with force

and/or torque functions supplied by the D.9 cards.

Subroutine FRAME_WINDOW - This subroutine uses QuickWin library routines, part of
the Visual Fortran package, to create a simple Window style interface. The interface is a single
window with a top menu bar. The menu bar has only one item “File”. Under the “File” is the “Exit”
command. All terminal output including error messages are written to this window.

Subroutine FSMSOL_STOP - This subroutine outputs information if the set of equations
to be solved by Subroutine FSMSOL, which are stored in the C array, exceeds the maximum size

of this array. It was created from Subroutine FSMSOL

Subroutine FUNC_RATE_DEP - This subroutine computes and adds rate dependent

functions. It was created from Subroutine FRCDFL.

Subroutine GET_MONTH_NAME - This subroutine obtains the name of a month from its
numerical sequence, e.g. given the value of 07 for a month, it returns the value “July”. This
subroutine is used by the new feature which prints out the starting and ending times for a

simulation.

Subroutine HBPLAY_POINTS - This subroutine determines if the new NL array is
different from the previous NL array. If so, it recomputes the BB elements for the points that are
different. What is effectively doing is determining if the harness belt points that were in play for

24

the previous step still in play for the current step. If not, it removes the points that are no longer in

play. It was created from Subroutine HBPLAY.

Subroutine HEDING_ACTUATORS - This subroutine prints out the headings for the
actuator torque tabular time histories. It was created from Subroutine HEDING.

Subroutine HEDING_ANG_DISPL - This subroutine prints out the headings for the
segment angular displacement tabular time histories. It was created from Subroutine HEDING.

Subroutine HEDING_BODY_PROP - This subroutine prints out the headings for the
total body properties tabular time histories. It was created from Subroutine HEDING.

Subroutine HEDING_FORCES - This subroutine was created in most part from
Subroutine HEDING of Version V.1. It prints out to the tabular time history file(s) the headings
associated with the plane/segment, segment/segment, simple belts, spring-dampers, force

functions, torque functions, and harness-belts.

Subroutine HE‘DING__HCARDS - This subroutine was created in most part from
Subroutine HEDING of Version V.1. It prints out to the tabular time history file(s) the headings
associated with the linear accelerations (Cards H.1), the linear velocities (Cards H.2), the linear
displacements (Cards H.3), rotations (Cards H.4), angular velocities (Cards H.5), angular
accelerations (Cards H.6), the joint function data (Cards H.7), the wind force data (Cards H.8),

~ joint forces and torques (Cards H.9), total body properties (Cards H.10), and the joint actuator

torque histories (Cards H.11).

Subroutine HEDING_JNT_PARM - This subroutine prints out the headings for the joint
parameter data (Card H.7) tabular time histories. It was created from Subroutine HEDING.

Subroutine HEDING_JOINT_FORCES - This subroutine prints out the headings for the
tabular time histories of the joint forces and torques. It was created from Subroutine HEDING.

Subroutine HEDING_WATER - This subroutine prints out the headings for the tabular

time histories for the water force option parameters. It was created from Subroutine HEDING.

Subroutine HEDING_WIND - This subroutine prints out the headings for the tabular time

histories associated with the wind force option. It was created from Subroutine HEDING.

25

Subroutine HPOINT_DROP - This subroutine is used by Subroutine HBPLAY_POINTS
in the process of determining which harness belt points are currently in play. It was created from
Subroutine HBPLAY.

. Subroutine HPTURB_SETUP - This subroutine is called by Subroutine HPTURB in the
process of perturbing (adjusting) the harness belts based on the friction between the belts, the
belt material properties and how the segment on which the belt lies is moving. Amongst other
functions, it sets up the C and IJK_HRN elements for the tie-points of the harness.in the process

of solving the C matrix. It was created from Subroutine HPTURB.

Subroutine HSETC_SUB - This subroutine is called by Subroutine HSETC in the
process of setting up and solving the matrix used to compute the forces and strains within the
harness belts. It was created to modularize the function of Subroutine HSETC, from which it was

created.

Subroutine HYLPR_PIVOT - This subroutine is called by Subroutine HYLPR, from which
it was created, to find the pivot column for the Simplex method used by Subroutine HYLPR.

Subroutine INITIALIZE - This subroutine performs all the initialization and setup needed
for a simulation prior to the starting the integration forward in time. It was created from the main

program subprogram, MAIN_ATB.

Subroutine INPUT_ACARDS - This subroutine was created primarily from .MAIN of
Version V.1. It reads in all the A Card data and writes it to the .AOU file.

Subroutine INPUT_AIRBAG_FORCE - This subroutine reads in the force definitions for
the airbags from the F.6 cards. It was created from Subroutine FINPUT.

Subroutine INPUT_BCARDS - This subroutine was created primarily from Subroutine
BINPUT of Version V.1. It reads in and echoes to the .AOU file the segmental parameters

associated with Cards B.1, B.2 and B.6.

Subroutine INPUT_BELT_FORCE - This subroutine reads in the force definitions for the
simple belt force and contact ellipsoid interaction, represented by the F.2 cards. It was created

from Subroutine FINPUT.

26

Subroutine INPUT_BELTS - This subroutine controls the reading in and echoing of the
input cards that describe the physical dimensions of the simple restraint belts (Cards D.3). It was
created from Subroutine SINPUT.

Subroutine INPUT_CONSTRAINTS - This subroutine reads in and echoes the
parameters describing the various types of constraints that can be specified for the segments, as
provided by Cards D.6. It was created from Subroutine SINPUT.

Subroutine INPUT_DCARDS - This subroutine controls the subroutines that read and
echo the input cards that describe the physical dimensions of the contact planes, simple belts,
contact ellipsoids, body segment symmetry and spring dampers. It replaces Subroutine SINPUT

in function, from which it was derived.

Subroutine INPUT_ELLIPSOIDS - this subroutine reads in and echoes the input
parameters describing the additional contact ellipsoids, as well as altering the values for the
default contact ellipsoids implicitly associated with each segment, as provided by the D.5 cards.
It was created from Subroutine SINPUT.

Subroutine INPUT_EQUILB - This subroutine reads in the parameters associated with
placing a simulation body in an equilibrium position before the start of the integration forward in
time, as provided by Cards G.4, G.5 and G.6. It was created from Subroutine EQUILB.

Subroutine INPUT_FCARDS - This subroutine controls the subroutines which input the
parameters associated with the plane-segment, segment-segment, simple belt-segment, harness
belt-segment, airbag-segment, wind force and water force contacts and globalgraphic joint forces.

It replaces Subroutine FINPUT, from which it was created.

Subroutine INPUT_FLEX — This subroutine was created primarily from Subroutine
BINPUT of Version V.1. It reads in and echoes the flexible element parameters associated with
Card B.7.

Subroutine INPUT_FORCE_TORQUE - This subroutine reads in the parameters
controliing the force / torque functions as supplied by the D.9 cards. It was created from
Subroutine SINPUT.

Subroutine INPUT_GLOBALGRAPHIC_FORCE - This subroutine reads in the
parameters that specify the allowed contacts for the globalgraphic joints, as provided by the F.4

27

cards. It also sets up tables to control the time history information for each function for the

globalgraphic joints. It was created from Subroutine FINPUT.

Subroutine INPUT_H10_CARDS - This subroutine reads in and echoes the parameters
that control the output of the tabular time histories for body center of gravity and related
information, as specified by the H.10 cards. It was created from Subroutine OUTPUT.

Subroutine INPUT_H11_CARDS - This subroutine reads in and echoes the parameters
that control the output of the tabular time histories for the joint actuator torques, as specified by

the H.11 cards. It was created from Subroutine OUTPUT.

Subroutine INPUT_H1_H3_CARDS - This subroutine reads in and echoes the
parameters that control the output of the tabular time histories for the total accelerations of a point
on a segment, the relative velocities of a specified point on a segment, and relative linear

displacements of a point on segment, as specified by Cards H.1, H.2 and H.3. It was created
from Subroutine OUTPUT.

Subroutine INPUT_H4_H9 CARDS - This subroutine reads in and echoes the
parameters that control the output of the tabular time histories for the segment angular
accelerations, segment relative angular velocities, relative angular displacements, wind forces
and joint forces and torques, as specified by Cards H.4, H.5, H.6, H.8, H.9, respectively. It was

created from Subroutine OUTPUT.

Subroutine INPUT_H7_CARDS - This subroutine reads in and echoes the parameters
that control the output of the tabular time histories for the joint parameters, as specified by Cards

H.7. It was created from Subroutine OUTPUT.

Subroutine INPUT_HCARDS - This subroutine was created primarily from Subroutine
OUTPUT of Version V.1. It controls the subroutines that read in and echo the input parameters
that specify the tabular time histories associated with Cards H.1 through Cards H.11.

Subroutine INPUT_JOINT_TORQUE- This subroutine reads in and echoes the
parameters associated with the joint restoring force and torque functions, as specified by the E.7

cards. It was created from Subroutine KINPUT.

Subroutine INPUT_JOINTS - This subroutine was created primarily from Subroutine
BINPUT of Version V.1. It reads in the joint parameters associated with Cards B.3, B.4 and B.5.

Subroutine INPUT_PER_FLOAT_DEV - This subroutine reads in and echoes the
parameters associated with water force personal flotation devices, as specified by-Cards F.9.h —
F.9.. It was created from Subroutine WATINP.

Subroutine INPUT_PLANE_FORCE - This subroutine reads in and echoes the
parameters associated with the plane — segment contact forces, as specified by Cards F.1. |t

was created from Subroutine FINPUT.

Subroutine INPUT_PLANES - This subroutine reads in and echoes the parameters
defining the plane — 'segment contact’forces, as specified by Cards D.2. It was created from
Subroutine SINPUT.

Subroutine INPUT_SEG_SEG_FORCE - This subroutine reads in and echoes the
parameters specifying the allowed segment — segment contacts (more precisely, contact ellipsoid
— contact ellipsoid), as specified by Cards F.3. It was created from Subroutine FINPUT.

Subroutine INPUT_SPRING_DAMPERS - This subroutine reads in and echoes the
parameters defining the spring dampers that can be connected between segments, as specified
by Cards D.8. It was created from Subroutine SINPUT. ‘

Subroutine INPUT_SYMMETRY - This subroutine reads in and echoes the parameters
setting which body segment symmetries are desired, as specified by the D.7 cards. it was
created from Subroutine SINPUT.

Subroutine INPUT_WATER_ELLIPSOIDS - This subroutine reads in and echoes the
parameters associated with the water force ellipsoid data, as specified by Cards F.9.e — F.9.9. It

was created from Subroutine WATINP.

Subroutine INPUT_WATER_OUTPUT - This subroutine reads in and echoes the
parameters associated with the water force output data, as specified by Cards F9k-F9m. It
was created from Subroutine WATINP.

Subroutine INPUT_WAVES - This subroutine reads in and echoes the parameters
associated with the water force waves option, as specified by Cards F.9.b — F.9.d. It was created
from Subroutine WATINP.

29

Subroutine INPUT_WIND - This subroutine reads in the parameters defining the wind
force functions and drag coefficients, as specified by Cards E.6. It was created from Subroutine

KINPUT.

Subroutine INPUT_WIND_FORCE - This subroutine reads in the parameters to set up
the tables that control the tabular time histories for each allowed wind force contact, as specified
by Cards F.7.a — F.7.c. It was created in part from Subroutine FINPUT, but was greatly

expanded in function.

Subroutine INTERS_SOLVE - This subroutine is used by Subroutine INTERS, from
which it was created, in the process of determining the intersection of two contact ellipsoids. One
of the functions of Subroutine INTERS_SOLVE is to test for the convergence of the iterative

process of determining the intersection.

Subroutine LUNUM_FORCES -This subroutine computes the logical unit numbers
associated with the tabular time histories for the force data output. This includes the simple belt
forces, the harness belt forces, the spring damper forces, the plane/segment contact force data,
the segment/segment contact force data and other force data output. Tests are performed to
ensure that the maximum number of logical units allowed to be open concurrently is not

exceeded.

Subroutine LUNUM_HCARDS - This subroutine computes the logical unit numbers
associated with the tabular time histories for the output associated with Cards H.1 through H.10.
Tests are performed to ensure that the maximum number of logical units allowed to be open

concurrently is not exceeded.

Module MODULE_FLEXIBLE - This module contains all the global variables associated
with the deformable body option. Refer to Section 2.1.1.b for more details. A listing of this

module is contained in Appendix A.2.

Module MODULE_STANDARD - This module contains all the global variables
associated with the ATB Model prior to the addition of the deformable body and water force
options. It also contains all the ATB Model global parameters. Refer to Section 2.1.1.a for more

details. A listing of this module is contained in the Appendix A.1.

Module MODULE_WATER - This module contains all the global variables associated
with the water force option. Refer to Section 2.1.1.c for more details. A listing of this module is

contained in the Appendix A.3.

30

Subroutine OUTPUT_BODY_PROP - This subroutine was created primarily from
Subroutine OUTPUT of Version V.1. It outputs the tabular time history data associated with the
total body properties specified by Cards H.10.

Subroutine OUTPUT_FORCES - This subroutine outputs the various force tabular time
histories to either the *.tp8 temporary file or to the individual tabular time history files. It was

created in most part from Subroutine OUTPUT of Version V.1. It is called only by Subroutine

OUTPUT.

Subroutine OUTPUT_H9_CARDS - This subroutine was created primarily from
Subroutine QUTPUT of Version V.1. It outputs the tabular time history data associated with the
joint constraint forces and torques for the joints specified by Cards H.9.

Subroutine OUTPUT_HCARDS - This subroutine was created primarily from Subroutine
OUTPUT of Version V.1. It controls the printing of output associated with Cards H.1 through H.8.

Subroutine OUTPUT_JOINTS - This subroutine was created primarily from Subroutine
BINPUT of Version V.1. It echoes the joint parameters associated with Cards B.3, B.4 and B.5.

Subroutine OUTPUT_LUNUM - This subroutine outputs to the .AOU file the names of
the files opened and/or used for the simulation. It also lists which type of data are in the tabular
time history files that were opened. It is called only by Subroutine OUTPUT_SETUP.

Subroutine OUTPUT_SETUP - This subroutine sets up the files for output of the tabular
time histories, Tape 8 output, or both. It acts as an executive subroutine to perform many of the '
functions that had been carried out by Subroutine OUTPUT of Version V.1. Accordingly, it was
created in most part from Subroutine OUTPUT of Version V.1. It is called only by Subroutine
OUTPUT.

Subroutine READ_TAPE_8 - This subroutine was created primarily from Subroutine
POSTPR of Version V.1. It reads in the simulation data that were stored in the unformatted
Tape8 temporary file. Itis called only by Subroutine POSTPR.

Subroutine UPDATE_CONSTRAINTS - This subroutine updates the constraints, as
defined by the D.5 cards. It was created from Subroutine UPDATE.

Subroutine UPDATE_EULER_JOINTS - This subroutine test whether to lock or unlock

an Euler joint axis. It applies the same test as in Subroutine UPDATE_JOINTS, but to each axis
of the Euler joint separately. It was created from Subroutine UPDATE.

31

Subroutine UPDATE_JOINTS - This subroutine checks for an impulse on a joint stop to
determine if the state of a joint should remain locked, or if the joint should unlock. It was created

from Subroutine UPDATE.

Subroutine UPDATE_TAB -This subroutine was created primarily from Subroutine
UPDFDC of Version V.1. It updates many of the parameters that are stored in the TAB array.
This array holds the constants associated with the various force functions used by the program.

Subroutine VISPR_TORQUE - This subroutine computes the total torque for the joints in
the inertial reference system, then converts it to the local reference system and adds it to the
external angular acceleration array (EXT_ANG_ACL, was U2). It was created from Subroutine

VISPR.
Subroutine WIND_AREA -This subroutine computes the projected area subjected to the

wind forces. It was created primarily from Subroutine WINDY.

Subroutine WIND_GRID - This subroutine computes the grid used to discretize the

application of the wind forces. It was created primarily from Subroutine WINDY.

2.4 Significantly Altered Subroutines
The following subroutines were significantly altered, usually by breaking them up by

function into several smaller subroutines.

Subroutine HEDING - Its function of outputting the heading data for the tabular time
histories is now distributed between Subroutines HEDING_FORCES and HEDING_HCARDS.
The revised Subroutine HEDING serves as the éontrolling subroutine, calling Subroutines
HEDING_FORCES and HEDING_HCARDS.

Subroutine INPUT_FILES — Though it is listed above as being the rename of Subroutine
FILES, this subroutine has been extensively rewritten to query the user for the default directory
name where the input files are to be found and the output files are to be stored. it updates a
parameters file that saves the directory that was used when the program last ran. It asks the user
for the name of the input file and the name to be given to the output files of the simulation.

Subroutine POSTPR - Its function of outputting tabular time histories and controlling the
computing of injury criteria remains unchanged. However, the task of reading in the data stored
in the temporary file Tape8 has been removed and placed in Subroutine READ_TAPE_8.

Subroutine OUTPUT - Its function of both inputting the H.1 through H.11 cards and
outputting all the tabular time histories, except for the water forces, is now distributed among

32

many subroutines. The revised Subroutine OUTPUT serves as the controlling subroutine, which
calls the following subroutines: INPUT_HCARDS, OUTPUT_BODY_PROP, OUTPUT_FORCES,
OUTPUT_H9_CARDS, OUTPUT_HCARDS, and OUTPUT_SETUP.

Subroutine UPDFDC - Its function of updating the force functions has been partitioned
into the following subroutines: DEF_NEW_CUBIC, DEF_NEW_QUADRATIC, UPDATE_TAB.

Subroutine WATINP - its function of setting up and controlling the water force option
has been partitioned into the following subroutines: INPUT_PER_FLOAT_DEV, INPUT_WATER,
INPUT_WATER_ELLIPSOIDS, INPUT_WATER_OUTPUT, and INPUT_WAVES.

Subroutine WINDY - lts functions of computing the wind forces and the forces
associated with the force/torque functions, are now separated by function. The calculation of the
forceftorque forces is now in Subroutine FORCE_TORQUE. The computation of the wind forces
is now controlled by the revised Subroutine WINDY, which calls Subroutines WIND_AREA and
WIND_GRID.

2.5 Eliminated Subroutines
The following subprograms found in Version V.1 of the ATB Model have been eliminated from

Version V.3:

Subroutine BINPUT - Its function of inputting all the B cards has been replaced by the
following new subroutines: INPUT_BCARDS, INPUT_FLEX, INPUT_JOINTS, and
OUTPUT_JOINTS.

Subroutine BLOCKDTA - The BLOCK DATA subprogram has been replaced by the use
of three modules: MODULE_STANDARD, MODULE_FLEXIBLE, and MODULE_WATER..

Subroutine COMPSYS - Its function of specifying the computer system on which the
ATB Model is running has been incorporated in MODULE_STANDARD.

Subroutine ELAREA - Its function of evaluating a function over the area of an ellipse
has been replaced by Subroutine ELARE3.

Subroutine FINPUT - Its function of inputting the F cards has been replaced by the
following subroutines: INPUT_AIRBAG_FORCE, INPUT_BELT_FORCE, INPUT_FCARDS,
INPUT_GLOBALGRAPHIC_FORCE, INPUT_PLANE_FORCE, INPUT_SEG_SEG_FORCE,
INPUT_WIND_FORCE

33

Subroutine KINPUT — Its function of inputting all the B cards has been replaced by the
following new subroutines: INPUT_JOINT_TORQUE and INPUT_WIND

Subroutine SINPUT - Its function of inputting all the D cards has been replaced by the
following new subroutines: INPUT_BELTS, INPUT_CONSTRAINTS, INPUT_DCARDS,
INPUT_ELLIPSOIDS, INPUT_FORCE_TORQUE, INPUT_PLANES,
INPUT_SPRING_DAMMERS, INPUT_SYMMETRY.

Function SPRNGF - lts function of computing the nonlinear spring torque for the joints
has been performed by other joint subroutines for several previous versions of the model.

Function VECANG - Its function of computing the angle between two vectors is no

longer needed by the program.

2.6 List-Directed ATB Input File
A new type of ATB input file based on the list-directed sequential READ statement is
provided to solve various limitations associated with the fixed format input file, i.e., the .AIN input
file. It uses “LIN” as the file extension and is essentially a free format version of the .AIN file.

The .LIN input file has the same modular input deck style as the .AIN file. In most cases, the
variable list for each card is the same between the two. A .LIN input card simply stretches each
numerical value in its corresponding .AIN card .to more than 10 digits and separates the values
with a blank space as the delimiter. Character strings usually requires double quotation marks
and are also blank space delimited. In addition, users have the option to add one or more
comments at the beginning of each input block by including records with “#” in the first column of

the record for either the .LIN file or the .AIN file.

For some cards, such as Card H.4, the .AIN file has a second card if the number of input
values exceeds 11 in the first card. In the .LIN file, there is only one card with the number of input
values limited by the allowable record length set the by operating system. The cards having this
change are F.7.b, H.4 to H.9, and H.11. All the other cards have the same number of input

values for both the .AIN and .LIN files.

With free format, the user can edit input decks much faster and easier in a .LIN file. To help
convert existing .AIN files into .LIN files, the option is provided to read in the existing .AIN file and

write out the corresponding .LIN file automatically.

2.7 Miscellaneous Modifications

2.7.1 Addition of Simple QuickWin Interface
During the testing of the new ATB V.3 program, it was found that as a COMPAQ Visual

Ifortran console application its running window tends to close immediately upon the termination of
the program. This behavior is caused by the COMPAQ Visual Fortran compiler and makes
reading any program generated error messages very difficult because most of them are terminal

output and will disappear after the running window closes.

To address this problem, QuickWin library routines, part of the Visual Fortran package, were
used to create a simple Window style interface. The interface is a single window with a top menu
bar. The menu bar has only one item “File”. Under the “File” is the “Exit” command. All terminal
output including error messages are written to this window. After the program stops due to an
either successful execution or abnormal crash, a message box appears to ask the user whether
or not to exit window. If the user chooses not to exit, the window stays open and he/she can

review all the terminal output by moving the vertical scrollbar.

2.7.2 Increase the Maximum Number of Time Histories
The maximum number of time history files is 65 in version V.1. This is primarily limited by the
old DOS environment in which version V.1 runs. Because the new ATB V.3 does not run in a

DOS environment, the maximum number of time histories has been increased to 200. It can be
increased further and up to the limit set by the computer operating system in which the program is

being run.

Since each time history is assigned a specific file extension (starting with “t21") as its
identifier, and the maximum number of time histories has been increased from 65 to 200,
subroutine FNAME has been modified to handle file extensions of 4 characters, such as “1123".

35

3. VERIFICATION SIMULATIONS

A number of verification simulations were performed to compare the results generated by
Version V.1 and Version V.3. Most of the input decks were provided by the Air Force. Several
additional input decks were created to isolate specific problems. All simulations were run on a
Dell Precision 220 Workstation (400 MHz Pentium) computer running Windows NT 4.0, service
pack 5, with the code compiled with the COMPAQ Visual Fortran Compiler, Version 6.5. Most of
the simulations were also repeated on a 233 MHz Dell Pentium. Several simulations were also
repeated on a Silicon Graphics Indigo 2 (R10000) workstation where the code was compiled

using the Silicon Graphics MIPSpro FS0 compiler.

In most cases, the resultant acceleration of a point on a segment was used to compare the
two versions of the code. This parameter was chosen because the point acceleration on a
segment, such as the head, is usually very sensitive to the external forces imposed on the body,
such as the harness belts or interaction with the contact planes. The model actually solves for
the linear and angular accelerations and constraint forces, therefore it was thought advisable to
compare one of the variables that the model integrator solves for. Where appropriate, other

parameters were used for comparison and the parameter used is noted in the data set

description.

3.1 Simulation Data Sets and Results
A brief summary of each input data set used in the verification simulations is provided below.
A listing of the first part of the .AOU file (that part echoing the .AIN file) for most of the simulations
is provided in the Appendices. Several .AOU files were omitted because of their length.

3.1.1 Ball Data Set
A single spherical ball bouncing on a horizontal plane is modeled. There is no vehicle

motion. The ball has no initial velocity. It is held above the plane and released. It then falls and
hits the plane and continues to bounce. This input deck was created specifically for this effort. A
partial .AOU file listing is provided in Appendix C.1. The simulation was run for 2000 steps for a
total simulation time of 4 seconds. The resultant acceleration of the center of the ball (point 0,0,0)
is plotted in Figure 1. It is seen that both versions of the code produce essentially identical

results.
Ball Data Set-
2 Point (0,0,0) on Segment 1

~1.5 f— Version V.1

-g - Version V.3
S 1TEwnus TR 1 1y,
5 :I::::::'I" ':l':li':::"ll:' ::”::::' I"'I' .ln"::"“: u”:
= AT T B T | | I I oy
8" :;I:-'-':l.'::n::f?::'l:'-:h::h::-!:"::.-::u..ui.: i
o L L T T PR LT P Y L PELT I Lo LT
< o fuy Mt
o " T T et Pt D] oL T T et o o T T T L
e T T L T o LR LT T T LD L T T LY L
Q LT LA Pt Vi Tiae LI Pk T L, o T T L
£ ll M l|| ||,||l..“;||.l | ,||_l|| | 'll ||||' {] I
gVl P T L T T DL Ve o T T T P T
el I L R T D L L L R T T T N
- I||.|| |||| llllll ~||..||.i| -'I'!l'li‘ .Il II
B bt
2 3.,5f;'q:-;'a,-I:.':::}v:-.,h;';ﬂ'}-:h'.:':.;;'i';-:l
A AL LN I L L I R LA,
?L!'IIJ’l.b.ﬁl;'[l\]!i'-bl‘[d,ﬂi.;’klBHJﬁi'iI
I W W W NN TN TN TN R NN S SR Y A N I N |

29 1000 2000 3000 4000

Time (msec)

Figure 1 Ball Data Set Resultant Acceleration vs Time

37

3.1.2 Body Data Set

A single body composed of 15 segments and 14 joints is modeled. There is no vehicle
motion and no initial linear or angular velocity. The body just falls in space. This input deck was
supplied by the Air Force. A partial .AOU file listing is provided in Appendix C.2. The simulation
was run for 400 steps for a total simulation time of 2 seconds. Because the intent of this data set
is to look at the total body properties, the total angular momentum of the body was used as the
comparison variable. As can be seen in Figure 2, the results for both versions are essentially

identical.
'R
HEAN
100F N
5 = Body Data Set
@ -200 |- N Body Made of Segments 1 -15
P - N
= -300 \
£ N N
= 400 F N
- . N\
g 400F .
-’ - AN
g -500 |~ N
N N
g 600 : N
-600 |- \
= C \
L] R \
-g -700 |~ N
- N
2 - Version V.1 N
< -800 = Version V.3 N .
-900 |- \.\
: | | { | l | |] | l | | |] ' ! I] l\ J
0 500 1000 1500 2000

Time (msec)

Figure 2 Body Data Set Angular Momentum vs Time

38

3.1.3 Fjection Data Set
A single body, composed of 16 segments and 15 joints, and an ejection seat are modeled.

The vehicle models an ACES |l ejection seat profile. The force environment consists of 16

contact planes, 4 additional ellipsoids, 1 harness, and a wind force. This input deck was supplied

by the Air Force. No .AOU file listing is provided in the Appendices because of the length of the
AOU file. The simulation was run for 250 steps for a total simulation time of 500 milliseconds.
The resultant acceleration of the center of the upper torso was used as the comparison variable.
As can be seen from Figure 3, the results for both versions of the code are almost identical, with

only very minor differences at some of the peaks and valleys.

Ejection Data Set
~ Point (0,0,0) on Segment No. 3 - l;T

-
(85

-
o
|

Resultant Linear Acceleration (g's)

5
1 Version V.1
) -~ - VersionV.3
t { {] | I) | {] l } | i | I {] | | I | | | |]
0 100 200 300 400 500

Time (msec)

Figure 3 Ejection Data Set Resultant Acceleration vs Time

39

3.1.4 H4 Card Data Set
A single body composed of 3 segments and 2 joints is modeled. The vehicle models a 10 g

sled impact test. There are no contact planes. The intent of this simulation is to model the head
and neck responses. This input deck was provided by the Air Force. A partial .AOU file listing is
provided in Appendix C.3. The simulation was run for 150 steps for a total simulation time of 300

milliseconds. The resultant acceleration of the center of the third segment was used as the
comparison variable. As can be seen from Figure 4, the results for both versions of the code are

essentially identical.

A

i R
25~ I \
— = ‘
-m b '\' R
© | H4CardDataSet '’ |
= Point (0,0,0)on ! 1
S 20~ SegmentNo.3-H/ |
© - I |
3 [!
3] i ! 1
15 |- “

§ s roo
- . / \ .
8 B Iy Version V.1
2 i Ny 1 Version V.3
- 10 Iv \
£ | 1 k
s | I \
= i \
7 R I ”~
& 5 i ’ \ -~ \

- / \ ~

- J P .

i ; ' | VidT

el e | . ! | ' ' L e — L
0 100 200 300

Time (msec)

Figure 4 H4 Card Data Set Resultant Acceleration vs Time

3.1.5 Human Data Set
A single body composed of 15 segments and 14 joints is modeled. The vehicle simulates a

human volunteer sled test. The joints for the body use the newly developed human joint
characteristics. This input deck was provided by the Air Force. A partial .AOU file listing is
provided in Appendix C.4. The simulation was run for 150 steps for a total simulation time of 300
milliseconds. The resultant acceleration of a point off-center on the head was used as the
comparison variable. As can be seen from Figure 5, the results for both versions of the code are

almost identical, with only extremely minor differences exhibited for some of the peaks and

valleys.
= r.
- AN
10F " A

% sE | \J Human Data Set
= F ! ~\ Point(6.2,0,3.2) on
o F I 1 Segment No. 5 -H
- 6 — ' i
A ;
2 n I
3 4F I
¢ I |
< N
5 o !
c N A
S b , Neol
S S N | :

B ~
§ 2F ~ , /
= - ‘
2 | [\
Y -4k Version V.1 |

- Version V.3 ,_ ’

-6 —— L | | 1 | {]] l\¢b|] 1 1] I
0 100 200 300

Time (msec)

Figure 5 Human Data Set Resultant Acceleration vs Time

41

3.1.6 HYBIII Data Set
Two Hybrid Il dummies totaling 34 segments and 33 joints are modeled. The vehicle

simulates a sled test car. The force environment consists of 10 contact planes and 2 harnesses
(one for each dummy). This input deck was provided by the Air Force. No .AOU file listing is
provided in the Appendices because of the length of the .AOU file. The simulation was run for
400 steps for a total simulation time of 2 seconds. The resultant accelerations of the centers of

the upper torso and head are used as the comparison variables. As can be seen from Figures 6
and 7, the overall responses are similar for both versions of the code, but there are significant
differences throughout the simulation. When the harness belt points were not allowed to slip, as
they were in the original data set, the results for both segments for both versions of the code are
essentially identical, as shown in Figures 8 and 9. This result will be discussed in more detail in

Section 3.4.
!
- : HYBIII Data Set
o Point (0,0,0) on Segment No. 3 - UT
N
z [
g
5 [
@
& o0 !
*'20-]I
G I Version V.1
"-g :ii' o -~ Version V.3
a _
o I I-.I
« 1°ju,'] L
AL N .
llh) '} | L LMM!I’M,J {)

0 500 _ 1000 1500 2000
Time (msec)

Figure 6 HYBIII Data Set Upper Torso Resultant Acceleration vs Time - Harness
Belts with Sliding

42

60

A
:- HYBIIl Data Set
h Point (0,0,0) on Segment No. 5 -H

[$)]
o

H
o

Version V.1
- Version V.3

Resultant Acceleration (g's)
N w
o o

-
o

'M

N
0o - 500 1000 1500 2000
Time (msec)

Figure 7 HYBIIl Data Set Head Resultant Acceleration vs Time — Harness Belts
with Sliding

43

40 [y

L HYBIIl Data Set
JI. Point (0,0,0) on Segment No. 3 - UT
11 No Slip (Friction) For Hamess Belts

W
o
|

Resultant Acceleration (g's)
S
|

e
"'. ' Version V.1
10H " ‘ Version V.3
B i |
L '\ir! A
-': 'l"jnw.,- :"‘H ! UL
Lot ‘l‘kl"l,'lr ,f i, SRR, »_lj’l\/.l‘g{"i’!.u
0 500 1000 1500 2000

Time (msec)

Figure 8 HYBIII Data Set Upper Torso Acceleration vs Time - Harness Belts
without Sliding

44

40 |-

w
o
|

Resultant Acceleration (g's)
N ,
l 3

-

o
|

—

HYBIIl Data Set
Point (0,0,0) on Segment No. 5 -H
No Slip (Friction) For Harness Belts

Version V.1
Version V.3

1% .
‘ A \,I hY) . .“\ h:",
[! ‘I' \' TR Lol e AP ASld ‘1 A A |

500 1000 1500 2000
Time (msec)

Figure 9 HYBIIl Data Set Head Resultant Acceleration vs Time - Harness Belts

without Sliding

45

3.1.7 Jump Data Set

A single body composed of 15 segments and 14 joints is modeled. There is no vehicle
motion. The ground is modeled as 3 contact planes. The body is given an initial linear velocity
and no initial angular velocity. The intent of the simulation is to mode! a parachute landing fall.
This input deck was provided by the Air Force. A partial .AOU file listing is provided in Appendix
C.5. The simulation was run for 80 steps for a total simulation time of 160 milliseconds. The
resultant acceleration of the center of the upper torso was chosen as the comparison variable. It

can be seen from Figure 10 that both versions of the code give essentially identical results.

30

N
(¢,

Jump Data Set
Point (0,0,0) on Segment No. 3 -UT

w i
> N I
s [!
© = I
s 20 I
a - I
Q
g [I
= 15| 1 W
© i ‘"
o R I ,
= i I |
= - | .
¥ 10 ! Version V.1
S T | !" Version V.3
a2 | \
Q B [| ‘
N A
- A '
o - \N | ! I \1-7"4-‘—#-4——-1) | I
0 50 100 150

Time (msec)

Figure 10 Jump Data Set Resultant Acceleration vs Time

46

3.1.8 Joint Star Data Set

A single body composed of 16 segments and 15 joints is modeled. The 16™ segment
represents the parachute. The body is given the initial velocity of the plane and wind forces act
on the chute. This input deck was provided by the Air Force. No .AOU file listing is provided in
the Appendices because of space limitations. The simulation was run for 500 steps for a total
simulation time of 1 second. The resultant acceleration of the center of the neck segment was
chosen as the comparison variable. As can be seen from Figure 11, the results for both versions

of the code are very similar, with only very minor differences exhibited at some of the peaks and

valleys.

Resultant Linear Acceleration (g's)

w

| Joint Star Data Set
. Point (0,0,0) on
- Segment No. 4 -N

Version V.1
- - w - VersionV.3

0 250 500
Time (msec)

Figure 11 Joint Star Data Set Resultant Acceleration vs Time

47

3.1.9 Merlin Data Set
A single body composed of 7 segments and 6 joints is modeled. There is no vehicle motion.

The first body segment was designated as a vehicle. The body functions as a robot using the
actuator option on Card D.1.b. This input deck was provided by the Air Force. A partial AOU file
listing is provided in Appendix C.6. The simulation was run for 60 steps for a total simulation time

of 600 milliseconds. Since the intent of this data set is to exercise the actuator option of the ATB
Model, the Y relative angular acceleration was chosen as the comparison variable. As can be
seen from Figure 12, both versions of the code produce essentially identical results.

0 R e———
S ’,
205 ‘
>- ’
g /A.
c 4
i) !
S .
o ! Merlin Data Set
3 1 Segment No. 4 - LARM
Q !
Q '.
<15k f
s I
s P
c -2 I
s I
2 o1
s [
Sos5H Version V.1
e P/ : Version V.3
i
3B v
0 100 200 300 400 500 600

Time (msec)

Figure 12 Merlin Data Set Y Relative Angular Acceleration vs Time

48

3.1.10 Neck Data Set

A single body composed of 3 segments and 2 joints is modeled. Segment 2 is modeled as a
deformable segment. The vehicle models a 10 G, deceleration. There are no contact planes.
The body has no initial linear or angular velocities. This input deck was provided by the Air
Force. No .AOU file listing is provided in the Appendices because of the length of the .AOU file.
The simulation was run for 200 steps for a total simulation time of 400 milliseconds. The
acceleration of the center of the head was used as the comparison variable. As can be seen

from Figure 13, the results for both versions of the program are very similar for the duration of the

simulation.
20
a Neck Data Set
= F Point (0,0,0) on Segment 3 - H
o | In Head Reference System
c -
5 15
2 |
A
° | "\ Version V.1
8 IARY Version V.3
o f I
Y Y
£ ' Y
i I \
- \
s [\ r’ \
S S 1~ \ 2
e r My !
Q oo :
€ [. ! o P hray
U ™A ,A‘.i‘ 'h" N i
O R] | | { l - L | | ' 1 i | | '] | | L |
0 100 200 300 400

Time (msec)

Figure 13 Neck Data Set Resultant Acceleration vs Time

3.1.11 S10INT Data Set
Two bodies totaling 34 segments and 33 joints are modeled. The vehicle models an S-10

pickup truck undergoing three rolls. The truck roof is given a prescribed motion to model its

49

deformation. Another prescribed motion models a window that breaks during the course of the
simulation. The force environment consists of 39 contact planes and one harness for each of the
occupants. This input deck was provided by the Air Force. No .AOU file listing is provided in the
Appendices because of the length of the .AOU file. The simulation was run for 500 steps for a
total simulation time of 1 second. Because of the complexity of this data set, the resultant
acceleration of the centers of the head and upper torso of the first body and the upper torso of the
second body were used as the comparison parameters. As can be seen from Figures 14, 15 and
16, overall the results for both versions of the code are very similar but differences in the results

between the two versions do exist. These differences will be discussed in Section 3.4.

-
35|

5 | r
230 r
§ [S10INT Data Set ;
® o5 Point (0,0,0) on
g “°F segmentNo.5 -1H :
8 ok ,
< 20F H
g f]
£ 15 Version V.1 f
:-l i Version V.3 /
o ~ H
S 10} ,"
2 | iy
X s ‘

0 250 500 750 1000

Time (msec)

Figure 14 S10INT Data Set Head Resultant Acceleration vs Time - First Body

50

o
(3,

w
o

S10INT Data Set
Point (0,0,0) on
Segment No. 3 - 1UT

N
[8)]

Resultant Linear Acceleration (g's)
N
o
llll]!Il'llllll11l|llll'llllllllllll

15 Version V.1
Version V.3
10
5
» rd
AVAN s
. ;X T
S S 1\1 l ‘M‘.\"varﬁwr/ -
0 250 500 750 - 1000

Time (msec)

Figure 15 S10INT Data Set Upper Torso Resultant Acceleration vs Time - First
Body

51

7 S10INT Data Set

- Point (0,0,0) on
= oL Segment No. 20 - 2UTj Version V.1
:flé C ll || - Version V.3
c I :, I
.‘g 5 , |
5 f L
g f A
@ o i A
O 4 I ll.
< T n ﬂ:'
@ [aa
g3 N
2 | pyo
5 of LY
= poaker v "
2 [S TYEANTL
X :Jvu\tﬂf\fx‘\n’r \ ' J!'L v ¢

[/ \’

0 250 500 750 1000

Time (msec)

Figure 16 S10INT Data Set Upper Torso Resultant Acceleration vs Time -

Second Body

3.1.12 S10INT_2 Data Set

Essentially the same as the S10INT input deck, except some of the contact plane force
functions are different. This input deck was provided by the Air Force. No .AOU file listing is
provided in the Appendices because of the length of the .AOU file. The simulation was run for
600 steps for a total simul.ation time of 1.2 seconds. The resultant acceleration of the head of the
first body and the upper torso of the second body were used as the comparison parameters. As
can be seen from Figures 17 and 18, the overall responses of both versions of the code are
similar, but there exist significant differences between the two versions, especially after about 600

milliseconds into the simulation. These differences will be discussed in more detail in Section

34.

52

180 =
- ~ S10INT2 Data Set
=160~ Point (0,0,0) on Segment No. 5 - 1H
o
=140 —
0 -
et -
©120 -
o r
o I
8100 -
< -
- -
S 80 Version V.1
= N Version V.3
- 0 -
£ 60F
S b
t:l; 40
w -
@
20
0 =~ 00 ~1000

Time (msec)

Figure 17 S10INT2 Data Set Head Resultant Acceleration vs Time - First Body

53

S10INT2 Data Set
Point (0,0,0) o]n Segment No. 20 - 2UT

r
% 6l :: Version V.1
o [{ L Version V.3
§ 5t L)
S T o
[. ! i
Q 4 I i-'
< | -
o i 1 III
e 3r e 1
-4 T re B |
8 2r rat L
2 [I ",Iﬁ: gt
2 1 Heoyfs ™ Y v
H AR \ ' f’
'i " | |
0 500 1000

Time (msec)

Figure 18 S10INT2 Data Set Upper Torson Resultant Acceleration vs Time -
Second Body

3.1.13 Water Data Set

A single body composed of 17 segments and 16 joints representing a standing Hybrid Il
dummy is modeled. There is no vehicle motion. Water forces are applied to the dummy, with 1
regular wave and 1 personal flotation device. The body has no initial linear or angular velocities.
This input deck was provided by the Air Force. A partial .AOU file listing is provided in the
Appendices. The simulation was run for 40 steps for a total simulation time of 640 milliseconds.
The resultant acceleration of the head was used as the comparison parameter. As can be seen
from Figure 19, the results for both versions of the code are essentially identical up to
approximately 420 milliseconds. After this time, there is a noticeable difference in magnitude

between the two versions of the code.

54

o
© -

o
o

o
o

Resultant Linear Acceleration (g's)
o o
4 ~

o
PN

l‘lllllll'llll'llll'llIlll_lllllllll

o
w

0

T 1

e
’(//

Water Data Set

Point (0,0,0) on
SegmentNo. 5 - H

Version V.1
Version V.3
=|!1|lll[1lll|l||4|l|ll|[lllIl|]!
100 200 300 400 500 600

Time (msec)

Figure 19 Water Data Set Resultant Acceleration vs Time

55

3.2 SGI Simulations

Several simulations using Version V.3 were run on a Silicon Graphics Indigo 2 workstation.
The code developed on the PC compiler required no modifications to compile on the SGL.
Simulation results were almost identical, with no differences exceeding fractions of a percent for
any variable examined. It should be noted that only several of the many simulations run on the
PC were actually run on the SGI. Therefore, any differences arising between machines because
of numerical round-off errors were not thoroughly examined. It is recommended that additional
simulations be performed on the SGI to better quantify the range of possible differences between

the PC and the SGI due to numerical round-off.

. 3.3 Other Simulations

A large number of basic simulations were performed on the PC to test out many of the coding
modifications and new features, such as the use of a KIND for variables and windowing of data
output. Because of their basic nature, they are not reported here. Also, the code was compiled
on a PC running Windows NT Workstation 4.0. Several simulations were run on the NT operating
system and compared to the same simulations run a PC running either the Windows 95 or
Windows 2000 operating system. As expected, the results were identical. Many additional
simulations were run in an attempt to ascertain why there were differences between Version V.1
and Version V.3 of the code, as explained above. The results of these simulations are discussed

below in Section 3.4.

3.4 Discussion of Results

In general, Version V.1 and Version V.3 produced very similar, if not identical, results for
most of the simulations examined. This is to be expected, since none of the underlying
mathematical algorithms used in the ATB Model were altered. Any differences that arise should
be due solely to numerical round-off errors because of differences in how values are handled
internally. These differences exist because a great deal of the coding logic was altered to
eliminate GO TO statements, arithmetic IF statements and similar constructs. This type of
recoding results in intermediate values being pushed on to the internal stacks and registers in
slightly different sequences than was done for the original code. This will inevitably lead to slight

differences in some values in the least significant bits.

3.4.1 Numerical Stability
With the large number of operations performed by the ATB Model in some complex

simulations, it is possible for these very small differences to accumulate and grow with time until
they may possibly alter the overall simulation results. It is felt that this is the cause for most of the
minor differences observed in the simulations discussed in Sections 3.1.1 through 3.1.13. Small
differences such as these should not be too big a concern if the code and algorithms are

56

numerically stable. However, after much examination, it was discovered that the one of the
algorithms used in the harness belt algorithms is not numerically stable. An effect of O(12) was
found, in the right circumstance, to produce a difference of O(1) in one integration step. [This
means that a difference on the order of 10™?can produce a result that differs by an order of 10'1].
It is not unreasonable to expect that differences of O(12) can develop between the two versions
of the code with time. This problem is demonstrated by the HYBIII data set (Section 3.1.6,
Figures 6 and 7). However, when the appropriate harness belt algorithm was circumvented by
requiring infinite friction between the harness belt and the contact ellipsoid, both versions of the

code produced identical results, as can be seen in Figures 8 and 9.

Part of the differences observed in the S10INT andS10INT_2 data sets between the two
versions of the code, Sections 3.1.11 and 3.1.12, respectively, may be due to the above
mentioned problem. However, when the harness belt algorithm in question was circumvented,
differences still remained. These differences were traced back to a different algorithm that
contained logic that was similar to the harness belt algorithm and correspondingly proved to be
numerically unstable. Given that there are at least two instances of numerically unstable
algorithms contained within the code, and most likely others, it is impossible to expect different
versions of the code to always produce identical results, even on the same machine. This
problem is only compounded when one compares different compilers, different machines and
different operating systems. This problem is further complicated by the use of different levels of
optimization during compilation, which only tends to exacerbate the problem. The recommended
solution is to make a careful and concerted effort to track down the numerically unstable
algorithms contained within the code and to modify these algorithms with numerically stable
coding techniques. The two equivalent versions of the code that now exist make an ideal test
bed to perform this work. Once the known numerical stability problems are resolved, the effect of

different levels of compiler optimization on simulation results can be examined.

3.4.2 Other Coding Problems

In the process of running the test simulations, several coding errors that are present in Version
V.1 were encountered and corrected. The array NFBPR, which is now used by Subroutines
INPUT_HCARDS and OUTPUT_HCARDS, had an incorrect counter. This is now corrected. In
addition, the dimensions were wrong for the arrays IREFPL and IREFEL in Subroutine CHKREF.

This error has also been corrected.

57

3.4.3 Current Limitations on Code Performance

Fortran 90, like many newer programming languages, is an object-oriented programming
language that is conceptually “array object” oriented, whereas Fortran 77 is more “array element
sequence” or “storage mapping” oriented. In Fortran 90, an array is considered an object in and
of itself, as well as a sequence of related but separate elements [5, page 513]. Because of this
philosophy, the programmer does not know how objects are stored in memory. It cannot be
assumed that two arrays in a named common block are contiguous in memory as can be done in
Fortran 77. Though it is beyond the scope of this report, a similar reasoning applies to passing of
arguments between subroutines. Therefore, the common practice of passing arrays between
ATB Mode! subroutines by passing only the first element of an array is discouraged in Fortran 90.

This practice is discouraged because it goes against the spirit of object-oriented code by making

an implicit assumption of how the arrays within each subroutine align in memory.

However, since Fortran 90 is required to accept all standard Fortran 77 code, this method of
passing data between subroutines must be handled properly by a Fortran 90 compiler. To do so
requires that the compiler include internal overhead in the compiled code to properly align the
arrays. This additional overhead defeats the efficiency of the Fortran 90 compiler, and may slow
down the code to the point that it may perform slower than the Fortran 77 code. This is
unfortunate because several studies have shown the newer Fortran 90 compilers can create very
efficient, compact and fast machine code for properly coded programs. The current code, even in
the Fortran 90 version of the code, continues to use this outdated form of argument passing
between subroutines. It is recommended that to increase the speed of Version V.3 of the code,
arguments be passed as objects, rather than as array elements. The most efficient way to do this
would be to further revise the code by forming structures composed of array objects that could
then be passed as objects between subroutines. The use of structures would not only speed up

the code but also make it more readable and easier to modify.

4. RECOMMENDATIONS
To maintain the usefulness of the coding modifications made under this effort, it is recommended
that future software contracts include the following requirements.
4.1 Coding
a.) All new or modified subroutines should utilize the USE ONLY version of the USE
statement. This will eliminate the inadvertent redefinition of a global variable in the module
referenced by the USE statement if there is a local variable with the same name as a variable in
the referenced module. Version V.3 of the code supplied under this contract has had all local
variables with the same name as a global variable (a variable in any of the modules) renamed to
clearly designate them as local variables. Future modifications of the code should continue this
practice to clearly designate those variables that are local and to avoid confusion if a USE
statement is inadvertently used instead of a USE ONLY statement. Furthermore, the use of the
USE ONLY statement makes it easier to understand which global variables are used by a specific
subroutine. Using the USE statement alone makes all the non-private variables in a module
available to the subroutine, making it much harder to discern which of the global variables are

used and/or altered by a particular subroutine.

b.) All new or modified subroutines should make use of the INTENT statements to clearly
designate how each of the passed variables is to be treated. The use of these statements both
makes it clearer to the programmer/reader of the code how the passed variables are to function
within a subroutine, and forces the compiler to check that the variables are properly used. [f the
passed arguments are not used according their intent; i.e. only as input, only as output, or as
input that can be modified for output, the compiler will flag this with a compile time error message.

c.) All new or modified subroutines should utilize the IMPLICIT NONE statement or flag in the
compiler, i.e. all variables in a subprogram should be explicitly typed. This is in keeping with
modern programming practice to explicitly list all variables used within a subprogram, eliminating
inadvertent changing of variable types, and will catch any misspelled variable names during
compilation, rather than defining the misspelled variable as a new variable with an initial value of

0 or blank.

d.) All new additions to the program should utilize modules rather than common blocks if the
variables are not passed as arguments. As previously explained, the use of modules enables the
compiler to enforce type and size consistency across all subroutines for any variables that are

referenced within a specific module.

e.) All future modifications to the code should strive to follow modern coding conventions,
such as limiting the use of GO TO statements, utilizing the CASE construct and IF/THEN blocks.

59

f.) The use of defining the KIND for each variable, both globally and locally should be
continued, as well as defining the KIND of each constant. This will avoid the problem of Fortran
90/95 using incorrect values when initializing variables. As explained above, if the variable A has
been explicitly typed as double precision, but the expression A = 1.0 is in the code, the rules of
Fortran 90 state that the single precision value for 1.0 will be used instead of the double precision

value. The proper expression is A = 1.0D0, or if double precision is defined by the KIND

parameter |I_HIGH, A = 1.0_I_HIGH.

g.) The use of structures within the code should be continued and expanded. The structure
JOINT should be fully implemented and structures should be created for the force functions and

the various contact options that are available in the program.

h.) The use of tabs within the code should be avoided, since tabs are not Fortran 90/95

standard.

i.) To maintain a visually consistent appearance of the code, operational code should be in
uppercase whereas all comments should continue to be in lowercase with standard capitalization

and grammar.

4.2 Use of Multiple Files
It is suggested that the code be maintained as individual subroutines within a specific
subdirectory, rather than as a few very large files. Maintaining subroutines as individual files is
supported by newer developer environments, such as the Microsoft Developer Studio™ [12,13].
The use of individual files permits faster editing times, quicker compiles, and the use of
incremental linking, which as a whole result in a much shorter build time for the executable code.

These developer environments permit searches across all the files within a specific directory, as

well as find and replace options across files.

The use of individual files allows the newer developer environments to customize the
compiler options by subroutines, such as setting debugging flags only where necessary during
code debugging. Also, since source browsers are also provided in the newer developer
environments, a programmer can easily check each instance where a variable is referenced,
defined or used throughout the compiled code, with line numbers provided for each individual

file/subroutine where such a reference is made.

Furthermore, the use of individual files makes it easier to build standard libraries of the code

with only those subroutines needing special modifications for a specific machine, operating
system or specialized version of the code having unique versions. Using the newer developer

environments, the programmer can develop make files that use the standard files/subroutines,
linked with the necessary special files and the appropriate compiler-inker options to create an
executable file targeted for a specific machine.

Finally, if the code is maintained as subroutines in individual files, minor coding modifications
that involve only a few subroutines can be provided to users of the program by sending only the
affected subroutines to individuals who have made customized modifications to the code. This
avoids the annoyance of having to do search and compares between the previous version of the
code and the new version of the code across files that have thousands of lines of code. It also
makes it easier to track coding changes either manually or by the use of commercially available

source code development tracking programs.

61

5. CONCLUSIONS
Though differences in resuits remain between Version V.3 of the ATB Model made under this
effort and the current Version V.1, it is strongly recommended that the use of the Version V.1
code cease and be replaced with Version V.3. The majority of the differences between the two
versions of the code seem to be due to numerical round-off errors that arise during a simulation

because of numerically unstable algorithms, the most problematic being attributable to the friction

forces for the harness belts and the contact planes.

The many advantages of Version V.3, a Fortran 90/95 version of the code, as expiained in
great detail throughout this report, make it the clear choice for the ATB Model coding for future
versions of the model. Though a very large number of changes were made to the code, they are
transparent to the general user. They are, however, far from transparent to anyone who needs to
work with the code. The revised code is much easier to work with, much easier to follow and
understand, more modular in nature, much less prone to errors and much easier to modify.
Therefore, Version V.3 of the code should become the next standard version of the ATB Model
and the recommendations given in Section 4 should be made into required guidelines to be

followed for all future coding modifications to the ATB Model.

62

6. REFERENCES

_ Validation of the Crash Victim Simulator: Volume 1 — Engineering Manual, John T. Fieck and
Frank E. Butler, CALSPAN Report No. ZS-5881-V-1, December 1981.

_ “Predictive Simulation of Restrained Occupant Dynamics in Vehicle Rollovers,” J. Smith, A.
Rizer and L. Obergefell, SAE 930887, 1993.

. “Prediction of Whole-Body Response to Impact Forces in Flight Environments,” . Kaleps,
AGARD Conf. Proc. 253 — Models and Analogues for the Evaluation of Human Biodynamic
Response, Performance and Protection, Jan. 1979.

_“The Use of the ATB/DYNAMAN in Injury Biomechanics,” T. Khatua, L. Cheng, R. Fijan and R.
Schmidt-Hargrave, Proceedings of the 1995 ATB Model Users’ Colloquium, June 1995,
Dayton, Ohio, 1995.

Fortran 90 Handbook — Complete ANSI/ISO Reference, J.C. Adams, W.S. Brainerd, J.T.
Martin, B.T. Smith and J.L. Wagener, McGraw-Hill, New York, 1992.

. Programmer’s Guide to Fortran 90, W.S. Brainerd, C.H. Goldberg and J.C. Adams, McGraw-
Hill, New York, 1990.

. Fortran 95 Handbook — Complete ISO/ANSI Reference, J.C. Adams, W.S. Brainerd, J.T.
Martin, B.T. Smith and J.L. Wagener, The MIT Press, Cambridge, MA, 1997.

. Fortran 95, M. Counihan, UCL Press Limited, London, England, 1996.

. “Parameterization of the Dynaman/ATB IV.2 Source Code”, T.R. Gardner, GESAC final report,
October 1991. .

10. “Articulated Total Body Model Enhancements, Volume 2: User’s Guide,” L.A. Obergefell, T.R.
Gardner, |. Kaleps and J.T. Fleck, AAMRL-TR-88-043, January 1988.

11. “Articulated Total Body Model Version V User’s Manual,” H. Cheng, A.L. Rizer and L.A.
Obergefell, Report No. AFRL-HE-WP-TR-1998-0015, February 1998.

12. Digital Visual Fortran Programmer’s Guide, Digital Press, M. Etzel and K. Dickinson,
Butterworth-Heinemann, Woburn, MA, 1999.

13. DIGITAL Fortran Language Reference Manual, Digital Equipment Corporation, Maynard MA,

1997.

63

THIS PAGE LEFT BLANK INTENTIONALLY

Appendix A - Module Source Code

65

A.1 MODULE_STANDARD Source Code
MODULE MODULE_STANDARD

1c
e Rev. V.3 7/10/2004
1c
) This module contains all the COMMON BLOCKs and PARAMETERS
Ic found in BLOCKDATA in version ATBV_1.
1c

IMPLICIT NONE
Ic
!c****************t****i'*************t**************t*************************
1c Define the KIND parameters for use throughout the program.
!C**
1c

INTEGER ICHAR_STD, INTEGER_STD, IREAL_HIGH, IREAL_STD,

& LOGICAL_STD

PARAMETER (ICHAR_STD = 1, INTEGER STD = 4, IREAL_HIGH = 8,

& IREAL_STD = 4, LOGICAL STD = 4)
tc
!c**
1c Define the numerical constants for the program.

!C****'k******************'k*****i************'k**'k******************************

c

INTEGER (KIND = INTEGER STD) I_0, I_1, I_2, I_3, I_4, I_S5,
& 16, 17, I8, I_9, I_10, I_11,
& 112, I_13, I_14, I_15, I_16,
& I_18, I_20, I_45, I_50, I_100

PARAMETER (I_0 = O0_INTEGER_STD,

& 11 = 1 _INTEGER_STD,
& 12 = 2 _INTEGER_STD,
& 13 3_INTEGER_STD,
& 14 = 4_INTEGER_STD,
& - s = 5_INTEGER_STD,
& 6 = 6_INTEGER_STD,
& 17 = 7_INTEGER_STD,
& I8 = 8_INTEGER_STD,
& 19 = 9_INTEGER_STD,
& 1_10 = 10_INTEGER_STD,
& I_11 = 11_INTEGER_STD,
& 112 = 12 INTEGER_STD,
& I_13 = 13_INTEGER_STD,
& 114 = 14_INTEGER_STD,
& 1_15 = 15 INTEGER_STD,
& 116 = 16_INTEGER_STD,
& 1_18 = 18_INTEGER_STD,
& I_20 = 20_INTEGER_STD,
& I_a5 = 45_INTEGER_STD,
& 1_50 = S5O0_INTEGER_STD,
& I_100 = 100_INTEGER STD)

1c
REAL (KIND = IREAL_STD) R_0, R_HALF, R_100, R_1000
PARAMETER (R_O = 0.0E0_IREAL_STD,
& R_HALF = 0.5E0_IREAL_STD,
& R_100 = 100.0E0_IREAL_STD,
& R_1000 = 1000.0E0_IREAL_STD)
1c
REAL (KIND = IREAL_HIGH) D_0, D_THIRD, D_HALF, D_1,
& p_2, b_3, D_4, D_S, D_6, D_8,
& D_9, D_10, D_12,
& D_100, D_180, D_1000
PARAMETER (D_0 0.0E0_IREAL_HIGH,
& D THIRD = 1.0E0_IREAL HIGH / 3.0EO_IREAL_HIGH,
& D_HALF = 0.SE0_IREAL_HIGH,
& D_1 = 1.0E0_IREAL_HIGH,
& D_2 = 2.0E0_IREAL HIGH,
& D_3 = 3.0E0_IREAL_HIGH,
& D 4 = 4.0E0_IREAL_HIGH,
& D_5 = 5.0E0_IREAL_HIGH,
& D_6 6.0E0_IREAL_HIGH,

66

1C

& D_8 = 8.0E0_IREAL_HIGH,
& D_9 = 9.0E0_IREAL HIGH,
& D_10 = 10.0E0_IREAL HIGH,
& D_12 = 12.0E0_IREAL HIGH,
& D_100 = 100.0E0_IREAL HIGH,
& D_180 = 180.0E0_IREAL_HIGH,
& D_1000 = 1000.0E0_IREAL HIGH)

lC************************************i**********'k*******i*******************i’

1C

Define the program name, version number and version date.

!C**

1c

IC

CHARACTER (LEN = 4, KIND = ICHAR_STD) PROGRAM NAME
PARAMETER (PROGRAM_NAME = ICHAR_STD_'ATB')
CHARACTER (LEN = 14, KIND = ICHAR_STD) VERSION_NUMBER
(
(
(

DARAMETER (VERSION NUMBER = ICHAR_STD_'Version 5.3.1 ')
CHARACTER (LEN = 17, KIND = ICHAR STD) VERSION_DATE
PARAMETER (VERSION_DATE = ICHAR _STD_'July 10, 2004')

IC**

'C

Define the global constants used in ATB Model version V_3.

lC************************'k*****i***

'1C
'C
1c
1C
1C
'C
'1c

iIC
1C
Ic
IC

1C
'C
tc

'c
'1c
1c

tc
'1c
tCc

1C
Ic
'c
Ic
Ic
tc
'c

IC
Ic
1C
iIc

MAXSEG = Maximum no. of segments

MAXJINT = Maximum no. of joints

MAXELP = Maximum no. of ellipsoids

MAXXELP = maximun no. of additional ellipsoids beyond the default
of one contact ellipsoid per segment

INTEGER (KIND = INTEGER_STD) MAXSEG, MAXJNT, MAXELP, MAXXELP
PARAMETER (MAXXELP = I_20)

PARAMETER (MAXSEG = 60_INTEGER_STD, MAXJNT = MAXSEG,

& MAXELP = MAXSEG + MAXXELP)

MAXPLN = Maximum no. of contact planes
MAXPSF = maximum no. of plane/segment contacts

INTEGER (KIND = INTEGER_STD) MAXPLN, MAXPSF
PARAMETER (MAXPLN = I_50, MAXPSF = 200_INTEGER_STD)

MAX_NUM BELTS = Maximum no. of simple belts

INTEGER (KIND = INTEGER STD) MAX NUM_BELTS
PARAMETER (MAX_NUM_BELTS = I_20)

Maximum no. of spring dampers

MAX_NUM_DAMPERS

INTEGER (KIND INTEGER_STD) MAX NUM_DAMPERS
PARAMETER (MAX_NUM_DAMPERS = I_20)

MAXSSF = maximum no. of segment/segment contacts

INTEGER (KIND = INTEGER_STD) MAXSSF
PARAMETER (MAXSSF = 150_INTEGER_STD)

MAXHRN = maximum no. of harmess belt systems

MAXHBLT = maximum no. of harness belts from all of the harnesses combined
MAXHPH = maximum no. of belt points per harness belt system

MAXHPT = maxinum no. of belt points from all of the harnesses combined

MULHRN = multiplier used for tie point

INTEGER (KIND = INTEGER_STD) MAXHRN, MAXHBLT, MAXHPH, MAXHPT
INTEGER (KIND = INTEGER _STD) MULHRN

PARAMETER (MAXHRN = I_5, MAXHBLT = I_20,

& MAXHPH = I_S50, MAXHPT = I_100, MULHRN = I_100)

MAX_FOR_TORQ = maximum number of force/torque functions that are
specified by the D.9 cards.

INTEGER (KIND = INTEGER_STD) MAX_FOR_TORQ
PARAMETER (MAX_FOR_TORQ = I_5)

67

1c
Ic
IC
1C
1C

1C
'C
1c
1c
IC
He
tc
e
1C

1C
e
iIC
1c
1C
tc
Ic
1c

1c
tC
1c

1c
X
1C

Ic
c
tc

Ic
IC
1c
el
19
1c
1C
'C
Ic

iIc
tc
Ic
IC
1c

1c
1c
tc

MAXREF = maximun no. of reference segments, i.e. segments for which full
6 degree of freedom motion is computed
MAXEQN = maximum no. of vector state variables

INTEGER (KIND = INTEGER_STD) MAXREF, MAXEQN
PARAMETER (MAXREF = I_20)
PARAMETER (MAXEQN I_2 * (MAXSEG + MAXREF))

MAX_FUNC = maximum no. of functions

MAXNTB = maximum no. of elements in the NTAB array. The scale factor
of 75 * MAX _FUNC is based on previous experience and may need
to be increased.

MAXTAB = maximum no. of elements in the TAB array. The scale factor
of 270 * MAX FUNC is based on previous experience and may need

to be increased.

INTEGER (KIND = INTEGER STD) MAX FUNC, MAXNTB, MAXTAB
PARBMETER (MAX_FUNC = 98_INTEGER_STD,

& MAXNTB 75_INTEGER_STD * MAX_FUNC,

& MAXTAB = 270_INTEGER_STD * MAX_FUNC)

]

MHEDNG = number of elements needed by arrays NOPL, MOPL, and M1PL

during postprocessing
In the following expression, The 1st '20' refers to maximum

no. of simple belt and harness belt endpoint strains and
forces. The 2nd '20' refers to maximum amount of
airbag/contact force information.

INTEGER (KIND = INTEGER_STD) MHEDNG
PARAMETER (MHEDNG = MAXPSF + I_20 + MAXSSF + I_20)

MAXCST = maximum no. of constraints.

INTEGER (KIND = INTEGER_STD) MAXCST
PARAMETER (MAXCST = I_12)

MAXFLX = maximum no. of flexible elements.

INTEGER (KIND = INTEGER_STD) MAXFLX
PARAMETER (MAXFLX = I_8)

MAXRHS = maximum no. of equations which can be solved by the program.

INTEGER (KIND = INTEGER_STD) MAXRHS
PARAMETER (MAXRHS = I_2 * MAXJNT + MAXFLX + MAXCST)

MAXCMX = maximum gize of the solution matrix, C.
get the maximum size of the solution matrix, C, to approximately

20.5% of the fully populated matrix that corresponds to the
full length of the known vector, RHS. The 20.5% populated size
for the C matrix was selected from previous experience with
how populated C was for various ATB simulations. Approximate

it generously by 1/4.

INTEGER (KIND = INTEGER_STD) MAXCMX

PARAMETER (MAXCMX = (MAXRHS**I_ 2 / I_4))
MXMOD = maximum no. of mode shapes used for deformable segments.
MXNOD = maximum no. of nodes in a deformable segment.

MAXDEF = maximum no. of deformable segments

INTEGER (KIND = INTEGER_STD) MXNOD, MXMOD, MAXDEF
PARAMETER (MXNOD = 4000_INTEGER_STD, MXMOD = I_4,
& MAXDEF = I_1)

MXHIC = maximum no. of time points stored for HIC computation

INTEGER (KIND = INTEGER STD) MXHIC
PARAMETER (MXHIC = 6000_INTEGER_STD)

68

1c
[Xe

1c
e
1c
1C
1c

14
1c
1C

1C
e
1C
1c
1c
1c

1c
IC
1C

tC
iC
1c
1c

IC
1c
iIc
1c

iC
IC
'C
1c
1c

e
1c
Ic
tc

tc
Ic
'c
iC
e
1c
He
1c
1c
1c
1c
IC
Ic

MAXBAG = maximum no. of airbags.

INTEGER (KIND = INTEGER_STD)} MAXBAG
PARAMETER (MAXBAG = I_5)

MAXBDP
MAXBDT = 2?2?2277
MAXBSH = ????°??

i

J
)
g
J
g
J

INTEGER (KIND = INTEGER_STD) MAXBDP, MAXBDT, MAXBSH
PARAMETER (MAXBDP = 400_INTEGER_STD, MAXBDT = I_20,

& MAXBSH = I_20)

& MAXVT4 = S5001_INTEGER_STD, MAXVDT = 5001_INTEGER_STD)

&

MAXVEH = maximum no. of vehicles.

INTEGER (KIND = INTEGER_STD) MAXVEH
PARAMETER (MAXVEH = I_6)

MAXVT2 = maximum number of time points for vehicle input option 2.
MAXVT3 = maximum number of time points for vehicle input option 3.
maximum number of time points for vehicle input option 4.

MAXVT4
MAXVDT = maximum number of time (data) points for vehicle motion.

INTEGER (KIND = INTEGER_STD) MAXVT2, MAXVT3, MAXVT4, MAXVDT
PARAMETER (MAXVT2 = 99_INTEGER_STD, MAXVT3 = 5001_INTEGER_STD,

MAX_NUM_TTH = maximum number of tabular time history files.

INTEGER (KIND = INTEGER_STD) MAX NUM_TTH
PARAMETER (MAX NUM_TTH = 200_INTEGER_STD)

MAX_ HCARD_TTH = maximum number of tabular time histories for
H.1l through H.9 and H.1l1l cards.

INTEGER (KIND = INTEGER_STD) MAX HCARD_ TTH
PARAMETER (MAX HCARD_TTH = I_20)

MAX_TOTAL_BODY = maximum number of bodies for the total body
properties specified by the H.10 cards.

INTEGER (KIND = INTEGER_STD) MAX_TOTAL_BODY
PARAMETER (MAX_TOTAL BODY = I_5)

MAX_LN_PPAGE = maximum number of lines of data per page of
the tabular time history, when it is outputted in "paged"
format, i.e. it has a heading for each page.

INTEGER (KIND = INTEGER_STD) MAX LN PPAGE
PARAMETER (MAX_LN PPAGE = I_45)

Offset value after which the tabular time history logical units
start.

INTEGER (KIND = INTEGER_STD) NUM_TTH_OFFSET
PARAMETER (NUM_TTH OFFSET = I_20)

Define the logical unit numbers where:

LUAIN is the standard input unit;

LUAOU is the standard output unit;

LUDEBUG is the debug output unit;

LUTP8 is the unformatted file used for postprocessing;
LUVIEW is the VIEW output unit;

LUFLEX is for the flexible segment input unit;

LU_MEM is the memory (run parameters) input/output unit;
LUFACET is for the faceted surface input unit;

LUTERM_IN is for terminal/console input;
LUTERM_OUT is for terminal/console output.

INTEGER (KIND = INTEGER_STD) LUAIN, LUAOU, LUTPS, LUDEBUG,
LUVIEW, LUFLEX, LUFACET, LULIN,

69

& LUTERM_IN, LUTERM_OUT, LU_MEM

PARAMETER (LUTERM OUT = I_0,
& LUVIEW = I_1,
& LU_MEM = I_2,
& LULIN = I_3,
& LUAIN = I_4,
& LUTERM IN = 1I_5,
& LUACU = I_6,
& LUDEBUG = I.7,
& LUTP8 = I8,
& LUFLEX = I_11,
& LUFACET = I_12)
1c
[Xe) Define logical constants for program.
ic
LOGICAL (KIND = LOGICAL STD) FALSE, TRUE
PARAMETER (FALSE = .FALSE._LOGICAL_STD,
& TRUE = .TRUE._LOGICAL_STD)
X
Ic Define the logical control parameters for the type
1c of input to be supplied: .
1c LIN_FLAG - true for list-directed input, i.e. .LIN;
1c - false for explicitly formatted input, i.e. .AIN
1c and whether a .LIN file is to be created from a .AIN file:
1c AIN_CONVERT - true to create a .LIN file
'c - false, no .LIN file will be created.
'c
LOGICAL (KIND = LOGICAL_STD) LIN_FLAG, AIN_CONVERT
1c
1c
!C*****t**************t***
1c Define the Structures
!c*i*******************t**
[o e e b
'c Define the structure type for tabular time histories.
1c BEGIN_LUNUM - beginning logical unit number for a particular type
1c of tabular time history output;
1C END_LUNUM - ending logical unit number for a particular type
1c of tabular time history output;
1c PRINT - logical flag; if true, the tabular time history
1c is to be outputted, if false, the tabular time
1c will not be outputted.
1c .
TYPE TTH_DESCRIP
INTEGER (KIND = INTEGER_STD) BEGIN_LUNUM
INTEGER (KIND = INTEGER_STD) END_LUNUM
LOGICAL (KIND = LOGICAL_STD) PRINT
END TYPE TTH_DESCRIP
1c
tc Define the tabular time history descriptors - the names are self-explanatory.
Ic
TYPE (TTH_DESCRIP) ACUATOR_TTH
TYPE (TTH DESCRIP) AIRBAG_TTH
TYPE (TTH_DESCRIP) ANG_ACCEL_TTH
TYPE (TTH DESCRIP) ANG ROT_TTH
TYPE (TTH DESCRIP) ANG_VEL_TTH
TYPE (TTH DESCRIP) BELT TTH
TYPE (TTH_DESCRIP) CG_TTH
TYPE (TTH_DESCRIP) HARNESS_TTH
TYPE (TTH_DESCRIP) JOINT_FORCE_TTH
TYPE (TTH_DESCRIP) JOINT_PARM TTH
TYPE (TTH_DESCRIP) LIN_ACCEL_TTH
TYPE (TTH_DESCRIP) LIN_DISP_TTH
TYPE (TTH DESCRIP) LIN_VEL_TTH
TYPE (TTH_DESCRIP) PLANE_SEG_TTH
TYPE (TTH_DESCRIP) SEG_SEG_TTH
TYPE (TTH_DESCRIP) SPRING_DAMP_TTH
TYPE (TTH _DESCRIP) WATER_TTH
()

TYPE

TTH_DESCRIP

WIND_TTH

He
1C
e
IC
IC
!C

e
1c
'C
IC
1C
1Cc
'C
'C
IC
e
tc
e
!C
1C
1C
'C
IC
IC
Ic

'c
Ic
IC

IC
'c
IC
IC

Define the structure and parameters for
time-windowing the output.:

MAX_NUM_OUT_TIMES - the maximun number of time windows permitted,

NUM_OUT_TIMES

INTEGER (KIND = INTEGER STD) MAX_NUM_OUT_TIMES
INTEGER (KIND = INTEGER STD) NUM_OUT_TIMES
PARAMETER (MAX_NUM_OUT TIMES = I_3)

For this structure:
PRINT - a logical flag; if true, the time windowing option
applies to output from Subroutine PRINT, if false,
time windowing is ignored by Subroutine PRINT
- a logical flag; if true, the time windowing option
applies to the tabular time history output, if false,
time windowing is ignored for the tabular time histories
- a logical flag; if true, the time windowing option

TTH

VIEW

START

END

- the number of time windows for a particular run.

applies to output for VIEW output, if false, time
windowing is ignored for VIEW output

- the time, in seconds,
for data to be outputted, this time is the
time, i.e. relative to time = 0.0 when the

when the time window

begins for a particular simulation

- the time, in seconds,

when the time window

time is the simulation time

TYPE OUTPUT_TIMES
LOGICAL (KIND = LOGICAL_STD)} PRINT

LOGICAL (KIND = LOGICAL STD) TTH

LOGICAL (KIND = LOGICAL_STD) VIEW
REAL (KIND
REAL (KIND
END TYPE OUTPUT_TIMES

= IREAL_HIGH) START
= IREAL_HIGH) END

Define the time control structure.

TYPE (OUTPUT_TIMES) OUT_TIMES (MAX_NUM_OUT_TIMES)

begins
simulation
integration

stops, this

Define the segment structure.

TYPE SEGMENT

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL
CHARACTER
REAL
REAL
REAL
LOGICAL
INTEGER
REAL

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

KIND = IREAL_HIGH
KIND = IREAL HIGH
KIND = IREAL_HIGH

KIND = IREAL_HIGH
KIND = IREAL_HIGH
KIND = IREAL_HIGH
KIND = IREAL_HIGH
KIND = IREAL HIGH
KIND = IREAL_HIGH
KIND = IREAL HIGH

KIND = IREAL HIGH
KIND = IREAL_HIGH
KIND = IREAL HIGH

LEN = 4, KIND = ICHAR_STD)

KIND = IREAL HIGH)
KIND = IREAL_HIGH)
KIND = IREAL_HIGH)

KIND = LOGICAL_STD)
KIND = INTEGER_STD)
KIND = IREAL_HIGH)

END TYPE SEGMENT

TYPE (SEGMENT) SEG

DIMENSION

SEG (MAXSEG)

BANG_ACCEL({3) !
ANG_ACL_CONV (3) !
ANG_VEL(3) !
ANG_VEL_CONV(3) !
DIR_COS(3,3) !
DRC_PHI(3,3) !
EXT_ANG_ACL(3) !
EXT_LIN ACL(3) !
LIN ACCEL(3) !
LIN ACL_CONV(3) !
LIN DISP(3) !
LIN VEL(3) !
LIN_VEL_CONV(3) !
NAME !
PHI (3) !
RECIP_MASS !
RECIP_PHI(3) !
ROT_PHI !
SINGULAR !
WEIGHT !

was
was
was
was
was
was
was
was
was
was
was
was
was
was
was
was
was
was
was
was

WMEGD
SGTEST(,3,)
WMEG
SGTEST(,1,)
D

DPMI

U2

Ul

SEGLA
SGTEST(,4,)
SEGLP
SEGLV
SGTEST(,2,)
SEG

PHI

RW

RPHI

LPMI

ISING

W

Define the joint structure.

71

Commented out items within the

1c structure have not yet been implemented.

1c
TYPE JOINT
CHARACTER (LEN = 4,
& KIND = ICHAR_STD) JNT_NAME ! was JOINT
INTEGER (KIND = INTEGER STD) PROX_SEG ! was JNT
LOGICAL (KIND = LOGICAL STD) EULER ! was EULER
LOGICAL (KIND = LOGICAL STD) SLIP_FREE | was FREE
te INTEGER (KIND = INTEGER STD) DSTL_SEG ! new J+1
REAL (KIND = IREAL HIGH) PROX_LOC(3) | was SR(1-3,2*J-1)
REAL (KIND = IREAL_HIGH) DSTL_LOC (3) ! was SR(1-3,2*J)
REAL (KIND = IREAL_HIGH) PROX_CNST ! was SR(4,2%J-1)
REAL (KIND = IREAL HIGH) DSTL_CNST ! was SR(4,2*J)
INTEGER (KIND = INTEGER STD) JTYPE ! was IPIN
te INTEGER (KIND = INTEGER STD) IEULER | was IEULER
lc INTEGER (KIND = INTEGER_STD) ISLIP ! was ISLIP
REAL (KIND = IREAL_HIGH) TENS_MAX | was CONST(1,)
REAL (KIND = IREAL HIGH) COMP_MAX ! was CONST(2,)
lc REAL (KIND = IREAL_HIGH) PROX_COORD (3,3) ! was HT(3,3,2*J-1)
te REAL (KIND = IREAL HIGH) DSTL_COORD(3,3) ! was HT(3,3,2+*J)
le INTEGER (KIND = INTEGER STD)} PROX_NODE(3) ! was NODJ(,1)
REAL (KIND = IREAL_HIGH) PROX_HA (3) | was HA(3,2*J-1)
REAL (KIND = IREAL HIGH) DSTL_HA(3) ! was HA(3,2+J)
REAL (KIND = IREAL HIGH) PROX_HB (3) ! was HB(3,2*J-1)
REAL (KIND = IREAL_HIGH) DSTL_HB(3) ! was HB(3,2*J)
te INTEGER (KIND = INTEGER STD) DSTL_NODE(3) ! was NODJ(,2)
ic
te REAL (KIND = IREAL HIGH) PROX_ROT(3) ! was YPR1
te REAL { KIND = IREAL HIGH) DSTL_ROT (3) ! was YPR2
le INTEGER (KIND = INTEGER STD) PROX_SEQ(3) ! was IDYPR(1-3)
lc INTEGER (KIND = INTEGER STD) DSTL_SEQ(3) ! was IDYPR(4-6)
te REAL (KIND = IREAL HIGH) INIT ROT ANG(3) ! was ANG(3)
REAL (KIND = IREAL HIGH) CNTR_SYM(3) ! was CONST(1-3,)
REAL (KIND = IREAL HIGH) COS_NUTA ! was CONST(4,)
REAL (KIND = IREAL_HKIGH) SIN_NUTA ! was CONST(5,)
ic
te REAL (KIND = IREAL HIGH) FLX_LIN_ COEF ! was SPRING(,1,3*J-2)
tc REAL (KIND = IREAL HIGH) FLX_QUA_COEF ! was SPRING(,2,3*J-2)
e REAL { KIND = IREAL HIGH) FLX_CUB_COEF | was SPRING(,3,3*J-2)
tc REAL (KIND = IREAL HIGH) FLX_ENRG_DIS ! was SPRING(,4,3*J-2)
te REAL (KIND = IREAL HIGH) FLX_JNT_STOP ! was SPRING(,5,3*J-2)
1c
te REAL { KIND = IREAL HIGH) TRQ_LIN_ COEF ! was SPRING(,1,3*J-1)
lc REAL (KIND = IREAL HIGH) TRQ_QUA_COEF ! was SPRING(,2,3*J-1)
e REAL { KIND = IREAL HIGH) TRQ_CUB_COEF ! was SPRING(,3,3*J-1)
te REAL (KIND = IREAL HIGH) TRQ_ENRG_DIS | was SPRING(,4,3*J-1)
e REAL (KIND = IREAL HIGH) TRQ_JNT_STOP ! was SPRING(,5,3*J-1)
1c
lc REAL (KIND = IREAL_HIGH) SPN_LIN_COEF ! was SPRING(,1,3*J)
le REAL { KIND = IREAL HIGH) SPN_QUA_COEF ! was SPRING(,2,3*J)
te REAL (KIND = IREAL_HIGH) SPN_CUB_COEF ! was SPRING(,3,3*J)
e REAL (KIND = IREAL HIGH) SPN_ENRG_DIS ! was SPRING(,4,3*J)
te REAL (KIND = IREAL HIGH) SPN_JNT_STOP | was SPRING(,5,3*J)
tc
le REAL (KIND = IREAL HIGH) PRE_VIS_COEF ! was VISC(1,3*J-2)
te REAL (KIND = IREAL HIGH) PRE_COU_FRIC ! was VISC(2,3*J-2)
te REAL (KIND = IREAL HIGH) PRE_REL_ANG_VEL ! was VISC(3,3*J-2)
te REAL { KIND = IREAL HIGH) PRE_MAX_TORQ ! was VISC(4,3*J-2)
le REAL (KIND = IREAL_HIGH) PRE_MIN_TORQ ! was VISC(5,3*J-2)
le REAL { KIND = IREAL HIGH) PRE_MIN_ANG_VEL ! was VISC(6,3*J-2)
lc REAL (KIND = IREAL HIGH) PRE_COEF_RST ! was VISC(7,3%J-2)
1c
lc REAL (KIND = IREAL HIGH) NUT_VIS_COEF ! was VISC(1,3*J-1)
te REAL (KIND = IREAL HIGH) NUT_COU_FRIC ! was VISC(2,3*J-1)
te REAL { KIND = IREAL_HIGH) NUT_REL_ANG_VEL ! was VISC(3,3*J-1)
le REAL (KIND = IREAL HIGH) NUT_MAX_TORQ ! was VISC(4,3*J-1)
tc REAL (KIND = IREAL HIGH) NUT_MIN_TORQ ! was VISC(5,3*J-1)
le REAL (KIND = IREAL HIGH) NUT_MIN_ANG_VEL ! was VISC(6,3*J-1)
lc REAL (KIND = IREAL HIGH) NUT_COEF_RST ! was VISC(7,3*J-1)
ic
I REAL (KIND = IREAL_HIGH) SPN_VIS_COEF | was VISC(1,3*J)

te
tc
fc
tc
lc
lc
1c

1C

'C
1C
He
ic
1Cc
1C
He
1C
1c
1c
tc
Ic
1c
1c
1c
'C
1C
1c
1c
1C
'C
1C
tc

1c
1c
e
1c
1c
tc
tC
iC
tc
Ic
[Xe
Ic
tc
e
'C

REAL
REAL
REAL
REAL
REAL
REAL

REAL
REAL

(
(

KIND
KIND
KIND

KIND

KIND =
KIND =

END TYPE JOINT

TYPE (JOINT) JNT
JNT (MAXJINT)

DIMENSION

KIND =
KIND =

= IREAL_HIGH
= IREAL_HIGH
= IREAL HIGH
IREAL_HIGH
IREAL_HIGH
= IREAL_HIGH

IREAL_HIGH)
IREAL_HIGH)

SPN_COU_FRIC
SPN_REL_ANG_VEL
SPN_MAX_TORQ
SPN_MIN_TORQ
SPN_MIN ANG_VEL
SPN_COEF_RST

JFORCE (3) !
JTORQUE (3) !

was
was
was
was
was
was

was F

VISC(2,3*J)
VISC(3,3*J)
VISC(4,3*J)
VISC(5,3*J)
VISC(6,3*J)
VISC(7,3*J)

was TQ

Define the vehicle structure:

VNAME
VTITLE
IVFLG

IVSEG
IVREF

NUM_VTAB
VNORMAL
LIN DATA

ANG_DATA
VOMEGA

VINIT_TIME

VDELTA_TIME

TIMEV

TYPE VEHICLE

name of the vehicle

= description of the vehicle
= flag denoting whether the prescribed motion is
relative to the ground (0) or a segment (1 or 2)
= vehicle segment number
= segment number to which the prescribed motion
is relative to
= number of time points of the vehicle acceleration
profile for options 2, 3, 4
= normal vector for the direction of the acceleration
pulse for options 1 and 2
= linear vector acceleration time profile for the vehicle
= angular vector acceleration time profile for the vehicle
= frequency for the half-sine wave option
= initial time of the vehicle acceleration profile for

options 2; 3, 4

time interval of the vehicle acceleration profile data

for options 2, 3, 4

time duration of the half-sine wave deceleration for

option 1 of the vehicle input

CHARACTER (LEN = 4, KIND = ICHAR_STD) VNAME
CHARACTER (LEN = 80, KIND = ICHAR_STD) VTITLE
INTEGER (KIND = INTEGER_STD) IVFLG

INTEGER (KIND = INTEGER_STD) IVSEG

INTEGER (KIND = INTEGER_STD) IVREF .

INTEGER (KIND = INTEGER_STD) NUM_VTAB

REAL (KIND = IREAL HIGH) VNORMAL (3)

REAL (KIND = IREAL HIGH) LIN_DATA (3,MAXVDT)
REAL (KIND = IREAL HIGH) ANG_DATA (3, MAXVDT)
REAL (KIND = IREAL HIGH) VOMEGA

REAL (KIND = IREAL HIGH) VINIT_TIME

REAL (KIND = IREAL HIGH) VDELTA_TIME

REAL (KIND = IREAL HIGH) TIMEV

END TYPE VEHICLE
TYPE (VEHICLE) VEH
DIMENSION. VEH (MAXVEH)

was VEH

was VPSTTL

was IVREF(1,)
was IVREF(2,)
was IVREF(3,)
was NVTAB(6)
was AXV(3,6)
was VATAB(1-3,,)
was VATAB(4-6,,)
was OMEGV (6)
was VTO(6)

was VTD(6)

was TIMEV(6)

Define the joint actuator structure:

ACT_JNT
BASE_SEG

TARGET ANGLE_FUNCT

PROPOR_FUNCT

DERIV_FUNCT

joint number the actuator is associated with
segment number to be the base segment for the
actuator

= function number for the target joint angle for
joint ACT_JNT, which the desired angle between
the two joint coordinate systems associated with
joint ACT_JNT

function number for the proportional gain control

variable in the actuator torque control equation

function number for the derivative gain control

variable in the actuator torque control equation

73

1c INTEGRAL_FUNCT = function number for the integral gain control
tc variable in the actuator torque control equation

1C TOR_AXIS = vector for the torque axis of the actuator joint,

'1c which is equal to the pin axis of the joint the

'c actuator is associated with

e ACT_TORQ = magnitude of actuator torque based on PID control

1c PROP_TORQ = proportional component of actuator torque

1c DERIV_TORQ = derivative component of actuator torque

1c INTEGRAL_TORQ = integral component of actuator torque

1c ACT_JNT_ANGLE = angle of joint associated with actuator

[Xe ACT_JNT_VEL = velocity of joint associated with actuator

1c
TYPE ACTUATOR
INTEGER (KIND = INTEGER_STD) ACT_JNT ! was NRJNT
INTEGER (KIND = INTEGER_STD) BASE_SEG ! was NRS
INTEGER (KIND = INTEGER_STD) TARGET_ANGLE_FUNCT ! was NRF(1,)
INTEGER (KIND = INTEGER_STD) PROPOR_FUNCT ! was NRF(2,)
INTEGER (KIND = INTEGER_STD) DERIV_FUNCT ! was NRF(3,)
INTEGER (KIND = INTEGER'STD) INTEGRAL_FUNCT ! was NRF(4,)
REAL { KIND = IREAL HIGH) TOR_AXIS(3) ! was QRU(1-3,)
REAL (KIND = IREAL HIGH) ACT_TORQ ! was TORQUE(1,)
REAL (KIND = IREAL HIGH) PROP_TORQ ! was TORQUE(2,)
REAL (KIND = IREAL_HIGH) DERIV_TORQ ! was TORQUE(3,)
REAL (KIND = IREAL HIGH) INTEGRAL_TORQ ! was TORQUE(4,)
REAL (KIND = IREAL_KIGH) ACT_JNT_ANGLE ! was TORQUE(S,)
REAL (KIND = IREAL HIGH) ACT_JNT_VEL ! was TORQUE(6,)
END TYPE ACTUATOR

1c
TYPE (ACTUATOR) ACT
DIMENSION ACT (MAXJNT)

Ic

1C

!c*******************************t****t********_*******************************

1c Define the global variables.

lc**i*****

ic
1c /ABDATA/
e
INTEGER (KIND = INTEGER_STD) IFULL
DIMENSION IFULL(6)
1c
REAL (KIND = IREAL_HIGH)
& ZDEP, DBR, DPVCTR, DEPLOY, AB, B, 2R, BFB,
& DRR, VBAGG, VSCS, SPRK, CK, CMASS, CYMIN,
& CYMOUT, BAGPV, PD, VBAG, VOLBP, PCYV,
& PCYMIN, PVBAG, TV1, TV2, SWITCH, PYMOUT,
& SCALEX, PREVT
DIMENSION ZDEP(3,5), DBR(3,3,5), DPVCTR(3,5), DEPLOY(3,5),
& AB(3,5), B(9,4,5), 2ZR(3,4,5), BFB(3,4,5), DRR(9,4,5),
& VBAGG (5), VSCS(5), SPRK(5), CK(5), CMASS(5), CYMIN(5),
& CYMOUT (5), BAGPV(5), PD(5), VBAG(5), VOLBP(5),
& PCYV(5), PCYMIN(5), PVBAG(S5), TV1(3,4,5), TV2(3,10,5),
& SWITCH (5), PYMOUT(5), SCALEX(S)
ic
1c COMMON /ABDATA/ ZDEP, DBR, DPVCTR, DEPLOY, AB, B, ZR, BFB,
ic * DRR, VBAGG, VSCS, SPRK, CK, CMASS, CYMIN,
1c * CYMOUT, BAGPV, PD, VBAG, VOLBP, PCYV,
el * PCYMIN, PVBAG, TV1, TV2, SWITCH, PYMOUT,
1c * SCALE, PREVT, IFULL
ic
!C*k********************************ﬁ***i*************************************
ic
1c /BACTFR/
ic
INTEGER (KIND = INTEGER STD) NRTORQ
. ic
e COMMON /ACTFR/ OQRU, TORQUE, NRTORQ, NRJINT, NRS

1c
!C**

'C

tc /ACTFR1/

1c
REAL (KIND = IREAL HIGH) ACT_TIME_PREV, ACT_THETA_CUR,
& ACT_THETA_PREV
iC
1c COMMON /ACTFR1/ NRF, TIMEI, THETAI
IC

!C***i**********

IC

tC /BAGDIM/
'1c
1C This common block was in Subroutine U1ASCD in V.1, but not in
1c BLOCK DATA.
1c
INTEGER (KIND = INTEGER_STD)
& IBMODL, IBSHP, IBATT, IBFOLD, IBDPLY, IBMOV, IBSEG,
& NBSEG, NDPLT, NDPLPT

DIMENSION IBMODL (MAXBAG), IBSHP (MAXBAG), IBATT(MAXBAG),

& IBFOLD (MAXBAG), IBDPLY (MAXBAG), IBMOV(MAXBAG),
& IBSEG (MAXBAG), NBSEG(MAXBAG), NDPLT (MAXBAG),
& NDPLPT (MAXBDT, MAXBAG) :
1c
REAL (KIND = IREAL HIGH)
& BAGSHP, BAGAXS, DPLX, DPLA, DPLTIM, ATTDIM,
& FOLDX, DPLYT, DPLYPT, PNL1l, PNL2, PNL3,
& BLEN, BAREA, BVOL, BWGT
DIMENSION BAGSHP (3, MAXBSH, MAXBAG) , BAGAXS (MAXBSH, MAXBAG) ,
& DPLX (3,MAXBAG), DPLA(3,MAXBAG), DPLTIM(MAXBAG),
& ATTDIM(2,MAXBAG), FOLDX(4,MAXBAG),
& DPLYT (MAXBDT, MAXBAG) , DPLYPT (MAXBDP, MAXBAG),
& PNL1(3), PNL2(3), PNL3(3), BLEN(MAXBAG),
& BAREA (MAXBAG) , BVOL (MAXBAG), BWGT (MAXBAG)
1c
[Tel2 2 X 2220
1C
1C /CDH10C/
1C
INTEGER (KIND = INTEGER_STD) ISEQ, IDCG
DIMENSION ISEQ(3,5), IDCG(5)
tc
REAL (KIND = IREAL HIGH) ORIGIN, XYZANG
DIMENSION ORIGIN(3,5), XYZANG(3,5)
1c
1C COMMON /CDH10C/ ORIGIN, XYZANG, ISEQ, IDCG
1C

!c***t********************************

e
Ic /CDINT/

Xed
1c NOTE: FF REPLACES F.
tc
INTEGER (KIND = INTEGER_STD) ICNT, IDBL, IFLAG
1C
REAL (KIND = IREAL HIGH)
& UuU, GH, E, FF, GG, Y, U, H, HPRINT, TSAVE,
& TPRINT, TSTART
DIMENSION UU(4), GH(3,4), E(3,3*MAXEQN), FF(5,3*MAXEQN),
& GG (5,3*MAXEQN), Y(5,3*MAXEQN), U(5,3*MAXEQN)
1c
1C COMMON/CDINT/ UU, GH, E, FF, GG, Y, U, H, HPRINT, TSAVE,
1C * TPRINT, TSTART, ICNT, IDBL, IFLAG
1c

!C**
ic
1c /CEULER/
1c
INTEGER (KIND = INTEGER_STD) IEULER
DIMENSION IEULER (MAXJNT)

REAL (KIND = IREAL_HIGH) HIR, ANG, ANGD, FE, TQE
DIMENSION HIR(3,3,3*MAXJNT), ANG(3,MAXJINT), ANGD(3,MAXJNT),

75

& FE(3,MAXJNT) , TQE (3, MAXJNT)
e
1c COMMON/CEULER/ IEULER, HIR, ANG, ANGD, FE, TQE, CONST
ic
!c**
1c
1c /CMATRX/

1c
REAL (KIND = IREAL_ HIGH)
& Vi, V2, V3, Bl2, A22, WJ, All
DIMENSION V1 (3,MAXJNT), V2(3,MAXJNT), V3(3,MAXCST),
& B12(3,3,2*MAXJUNT), A22(3,3,2*MAXJNT),
& WJ (MAXJINT), All(3,3,MAXJNT)
1c :
1C COMMON /CMATRX/ V1, V2, V3, B12, A22, F, TQ, WJ, All
1c

!c********************"********'k***'ﬁ**

1c
H /CNSNTS/

tc
REAL (KIND = IREAL_HIGH)
& PI, RADIAN, G, EPS, GRAVTY, TWOPI
DIMENSION EPS(24), GRAVTY(3)
1c
CHARACTER (LEN = 8, KIND = ICHAR STD) UNITL, UNITM, UNITT
1c
Ic COMMON /CNSNTS/ PI, RADIAN, G, THIRD, EPS,
1c * UNITL, UNITM, UNITT, GRAVTY, TWOPI
tc Note: added the constant ZERO to this grouping.
1C

!C*************************k**

Ic
1c /CNTSRF/

1c

REAL (KIND = IREAL HIGH) PL, BELT, TPTS, BD, BELT_FORCE

DIMENSION PL(24,MAXPLN), BELT(ZO,MAX_NUM_BELTS),

& TPTS (6, MAX_NUM_BELTS), BD(24,MAXELP),

& BELT_FORCE (4,MAX_NUM_BELTS)
1c .
IC COMMON /CNTSRF/ PL, BELT, TPTS, ED
1c
!C**********************'l'**************'k**********************i***************
1c
1c /COMAIN/
1c

INTEGER (KIND = INTEGER_STD) ISTEP, NSTEPS, NDINT, NEQ

1c

REAL (KIND = IREAL_HIGH) VAR, DER, DT, HO, HMAX, HMIN

DIMENSION VAR (3*MAXEQN), DER (3*MAXEQN)
1c
¥ COMMON /COMAIN/ VAR, DER, DT, HO, HMAX, HMIN, ISTEP, NSTEPS,
tc * NDINT, NEQ
1c

!C******t*********i***

1c
c /CONTRL/

1c

INTEGER (KIND = INTEGER_STD)

& NSEG, NJNT, NPL, NBLT, NBAG, NVEH, NGRND,

& NS, NQ, NSD, NFLX, NHRNSS, NWINDF, NJNTF, NPRT,

& NPG

DIMENSION NPRT(36)
1c

REAL (KIND = IREAL HIGH) TIME
1C
1c COMMON /CONTRL/ TIME, NSEG, NJNT, NPL, NBLT, NBAG, NVEH, NGRND,
1c d NS, NQ, NSD, NFLX, NHRNSS, NWINDF, NJNTF, NPRT,
1c * NPG
1C

!C*i‘******t*********'l'*******************t*i**i********************************

76

e
tC
1c
1C
1C
!C

tC
1C
He
e

!C**

1C
1C
1C
1C
1C
'C

IC
'C
'c
e

'c
Ic
IC
Ic
tC
IC

1C
iIC
e
'C

!C*********t************************************t*****************************

tC
tC
'c

e
e
e
e

!C*********i***i**

'C
e
I1C

&
&

R R

R R R R

QR R

/cout/

Was in Subroutine FINPUT, HEDING in Release V.1, but was not
included in the BLOCK DATA routine.

INTEGER (KIND = INTEGER_STD) NOUTPS, NOUTSS
DIMENSION NOUTPS (MAXPSF), NOUTSS (MAXSSF)

COMMON/COUT/ NOUTPS (MAXPSF), NOUTSS (MAXSSF)

/COUTFMT/

This common was in Subroutine UlASCD in V.1, but not in the BLOCK

DATA.

INTEGER (KIND = INTEGER_STD)
IBAGFM, IBAGTY, IHARFM, IHARTY, IRGDFM, IRGDTY,
ITIMFM, ITIMTY

COMMON/COUTFMT/ ITIMTY,ITIMFM, IRGDTY, IRGDFM,
* IBAGTY, IBAGFM, THARTY, THARFM

!C************************i******************'k***********'i********************

/COUTN/

This common was in Subroutine U1ASCD in V.1, but not in the BLOCK

DATA statement.
INTEGER (KIND = INTEGER_STD) NTOBLT, NTOPTS, LDUM, LPREV

COMMON/COUTN/ NTOBLT, NTOPTS, LDUM, LPREV

/CSTRNT/

INTEGER (KIND = INTEGER_STD) KQ1, KQ2, KQTYPE
DIMENSION KQ1 (MAXCST), KQ2(MAXCST), KQTYPE(MAXCST)

REAL (KIND = IREAL HIGH)
Al13, A23, B31, B32, HHT, RK1, RK2, QQ, TQQ,
RQQ, HQQ, SQQ, CFQQ
DIMENSION A13(3,3,I_2*MAXCST), A23(3,3,I_2*MAXCST),
B31(3,3,I_2*MAXCST), B32(3,3,I_2*MAXCST),
HHT (3, 3,MAXCST), RK1(3,MAXCST), RK2(3,MAXCST),
0Q (3, MAXCST), TQQ(3,MAXCST), RQQ(3,MAXCST),
HOQ (3, MAXCST), SQQ(MAXCST), CFQQ(MAXCST)

COMMON /CSTRNT/ A13, A23, B31, B32, HHT, RK1l, RK2, QQ, TQQ,
* RQQ, HQQ, SQQ, CFQQ, KQl, KQ2, KQTYPE

/CYDATA/

REAL (KIND = IREAL_HIGH)
CYTD, CYPA, CYSP, CYTO, CYVO, CYCD, CYK, CYR,

CYAT, CYPV, CYCDO, CYPO, CYSS, CYLO, CYC, CYAO,

CYRHOO, CYVMAX, CYORFC, CYRHO, CYT, CYP, CYV

DIMENSION CYTD (MAXBAG) , CYPA(MAXBAG), CYSP(MAXBAG),

R R

CYTO (MAXBAG) , CYVO(MAXBAG), CYCD(MAXBAG),
CYK (MAXBAG), CYR(MAXBAG), CYAT (MAXBAG),
CYPV(MAXBAG), CYCDO (MAXBAG), CYPO(MAXBAG),
CYSS (MAXBAG), CYLO (MAXBAG), CYC(MAXBAG),

71

& CYRHOO (MAXBAG) , CYVMAX (MAXBAG), CYORFC (MAXBAG),
CYRHO (MAXBAG) , CYT(MAXBAG), CYP(MAXBAG),

&
& CYV (MAXBAG), CYAO (MAXBAG)
1c
tc COMMON /CYDATA/ CYTD, CYPA, CYSP, CYTO, CYVO, CYCD, CYK, CYR,
el * CYAT, CYPV, CYCDO, CYAO0, CYPO, CYSS, CYLO, CYC,
1c * CYRHOO, CYVMAX, CYORFC, CYRHO, CYT, CYP, CYV
Ic
!c***i****************
Ic
1c /DAMPER/
1c
INTEGER (KIND = INTEGER_STD) MSDM, MSDN
DIMENSION MSDM(MAX NUM_DAMPERS), MSDN (MAX_ NUM_DAMPERS)
1c
REAL (KIND = IREAL_HIGH) APSDM, APSDN, ASD, DAMP_FORCE
DIMENSION APSDM(3,MAX_NUM_DAMPERS), APSDN (3,MAX_NUM_DAMPERS),
& ASD (5,MAX_NUM_DAMPERS), DAMP_FORCE (4, MAX_NUM_DAMPERS)
ic
1C COMMON/DAMPER/ APSDM, APSDN, ASD, MSDM, MSDN
Ic
[C'ﬁ******************************tt***
1c
!{C /DESCRP/
1c
INTEGER (KIND = INTEGER_STD) IGLOB, JOINTF
DIMENSION IGLOB(MAXJNT), JOINTF(3,MAXJNT)
el
REAL (KIND = IREAL_HIGH)
& HT, SPRING, VISC
DIMENSION HT(3,3,2*MAXJINT), SPRING(5,3*MAXJINT),
& VISC(7,3*MAXJINT)
ic
ic COMMON /DESCRP/ PHI, W, RW, SR, HA, HB, RPHI, HT, SPRING,
1c * VISC, JNT, IPIN, ISING, IGLOB, JOINTF
1c
!C*******************ﬁ**********l'***
1c
1¢ /FILEN/
1c
CHARACTER (LEN = 32, KIND = ICHAR STD) INFIL, OUTFIL
CHARACTER (LEN = 80, KIND = ICHAR STD) WORK_DIRECTORY
1c

1C COMMON/FILEN/ OUTFIL
1c
e e R e e R e 2R SRR AR AR RS AR R R AL h bbb

1c
Ic /FLXBLE/

1c
INTEGER (KIND = INTEGER_STD) NFLEX
DIMENSION NFLEX (3, MAXFLX)
tc
REAL (KIND = IREAL_HIGH) HF, B42, V4
DIMENSION HF(4,12,MAXFLX), B42(3,3,I_3*MAXFLX), V4 (3, MAXFLX)
1c
1c COMMON /FLXBLE/ HF, B42, V4, NFLEX
1c
!c*********************t****t*****************************'k**i****************
Ic
tc /FORCES/
1c
tc NBGSF = number of airbag-segment tabular time histories
IC NBSF = number of harness belt tabular time histories
!1c NPANEL =
1c NPSF = number of plane-segment tabular time histories
1c NSSF = number of segment-segment tabular time histories
1c
tc BAGSF = array containing airbag-segment tabular time history data
e HARNESS_FORCE = array containing harness belt tabular time history data
1c PRJINT = array containing joint tabular time history data

78

Ic
IC
1C

1C
'C
X
1C

PSF = array. containing plane-segment tabular time history data
SSF = array containing segment-segment tabular time history data
INTEGER (KIND = INTEGER_STD) NPANEL, NPSF, NBSF, NSSF, NBGSF

DIMENSION NPANEL (MAXBAG)

REAL (KIND = IREAL_HIGH) PSF, HARNESS FORCE, SSF, BAGSF,

& PRJNT
DIMENSION PSF(7,MAXPSF), HARNESS_FORCE (4, MAXHBLT),
& SSF (10, MAXSSF), BAGSF(3,20), PRJINT (7, MAXJNT)

COMMON /FORCES/ PSF, BSF, SSF, BAGSF, PRJNT, NPANEL, NPSF, NBSF,
* NSSF, NBGSF

!C**

tc
iC
1c
Ic
tc
tc
1C
1c

'c
1C

'c
'C

/HBPTRB/

HRN_EPSDEL = maximum strain convergence criterion used for balancing
the harness belts

HRN MAX ITR = maximum number of iterations used to meet the maximum
strain convergence criterion for the harness belts

INTEGER (KIND = INTEGER_STD) HRN_MAX ITR

REAL (KIND = IREAL_HIGH) HRN_EPSDEL

COMMON /HBPTRB/ EPSDEL, MAXITR

!C**

1c
1c
Ic

e
1c
1c
'c

/HRNESS/

INTEGER (KIND = INTEGER_STD)

& IBAR, NL, NPTSPB, NPTPLY, NTHRNS, NBLTPH, KEEP
DIMENSION IBAR(5,MAXHPT), NL(2,MAXHPT), NPTSPB(MAXHBLT),
& NPTPLY (MAXHBLT) , NTHRNS (MAXHBLT,25), NBLTPH (MAXHRN),
& KEEP (MAXHPT)

REAL (KIND = IREAL HIGH) BAR, BB, BBDOT, PLOSS, XLONG, HTIME
DIMENSION BAR(15,MAXHPT), BB(MAXHPT), BBDOT (MAXHPT),
& PLOSS (2, MAXHPT) , XLONG (MAXHBLT), HTIME(2)

COMMON /HRNESS/ BAR, BB, BBDOT, PLOSS, XLONG, HTIME, IBAR, NL,
* NPTSPB, NPTPLY, NTHRNS, NBLTPH, KEEP

!C*******************************'ﬁ*****************************i’**************

IC
iC
tC

'C
'C
1c
1c

ic
1c
IC

/INTEST/

CHARACTER (LEN = 4, KIND = ICHAR STD) SEGT
DIMENSION SEGT (4 *MAXSEG)

REAL (KIND = IREAL_HIGH) XTEST
DIMENSION XTEST (3, 4*MAXSEG)

Create single dimensioned versions of the XTEST and REGT arrays
for Subroutines DINTG and PDAUX.

CHARACTER (LEN = 8, KIND = ICHAR STD) REGT_SNGL
DIMENSION REGT_SNGL (4 *MAXSEG)

REAL (KIND = IREAL HIGH) XTEST_SNGL
DIMENSION XTEST_SNGL (3*4*MAXSEG)

EQUIVALENCE (XTEST, XTEST_SNGL)

COMMON /INTEST/ SGTEST, XTEST, SEGT, REGT

79

!C*****t*****************************t**

1c
1c /JBARTZ/
1c
INTEGER (KIND = INTEGER_STD)
& MNPL, MNBLT, MNSEG, MNBAG, MPL, MBLT, MSEG, MBAG,
& NTPL, NTBLT, NTSEG
DIMENSION MNPL(MAXPLN), MNBLT (MAX_NUM_BELTS), MNSEG(MAXSEG),
& MNBAG(6), MPL(3,5,MAXPLN}, MBLT(3,5,MAX NUM_BELTS),
& MSEG (3, 5,MAXSEG), MBAG(3,10,6), NTPL(5,MAXPLN),
& NTBLT (5, MAX_NUM_BELTS), NTSEG (5, MAXSEG)
1c
1c COMMON/JBARTZ/ MNPL, MNBLT, MNSEG, MNBAG, MPL, MBLT, MSEG,
1c * MBAG, NTPL, NTBLT, NTSEG
1c
!C**
1c
1c /RSAVE/
1c
INTEGER (KIND = INTEGER_STD)
& NSG, MSG, MCG, MCGIN, KREF, MJs
DIMENSION NSG(10), MSG(MAX_HCARD_ TTH,10),
& MCGIN (24, MAX_TOTAL_BODY),
& KREF (MAX_HCARD_TTH,10), MJS(MAX HCARD_TTH, 2)
1c
REAL (KIND = IREAL_HIGH) XSG
DIMENSION XSG (3,MAX HCARD_TTH,3)
1c
1c COMMON /RSAVE/ XSG, DPMI, LPMI, NSG, MSG, MCG, MCGIN, KREF, MJS
1c
!C**tt*********i********************
1c
1c /SGMNTS/
1c
INTEGER (KIND = INTEGER_STD) SYMMETRY ! was NSYM
DIMENSION SYMMETRY (MAXSEG)
1c
1c COMMON /SGMNTS/ D, WMEG, WMEGD, Ul, U2, SEGLP, SEGLV, SEGLA, NSYM
1c
!c**
1c
1c /TABLES/
1c
INTEGER (KIND = INTEGER_STD)
& MXNTB, MXTB1, MXTB2, NTI, NTAB
DIMENSION NTI(MAX FUNC), NTAB(MAXNTB)
1c
REAL (KIND = IREAL HIGH) TAB
DIMENSION TAB (MAXTAR)
1c
Ic COMMON /TABLES/ MXNTI, MXNTB, MXTB1l, MXTB2, NTI, NTAB, TAB
tc
!C**t*********w*********
Ic
1c /TEMPVI/
1c
INTEGER (KIND = INTEGER_STD) JSTOP
DIMENSION JSTOP(4,2,MAXJNT)
1c
REAL (KIND = IREAL HIGH) CREST, TTI, R1I, R2I
DIMENSION TTI(3), R1I(3), R2I(3)
1c
1c COMMON /TEMPVI/ CREST, TTI, R1I, R2I, JSTOP
Ic
!C*******t***********************t**
Ic
1c /TITLES/
1c

CHARACTER (LEN = 12, KIND = ICHAR_STD) DATE

CHARACTER (LEN = 20, KIND = ICHAR_STD)
& BAGTTL, BDYTTL, BLTTTL, PLTTL

80

1c
1c
tC
tC
1c
1c
IC
'C
1c
'C
tC

DIMENSION BAGTTL(6), BLTTTL(MAX NUM_BELTS), PLTTL (MAXPLN)
CHARACTER { LEN = 80, KIND = ICHAR STD) VPSTTL
CHARACTER (LEN 160, KIND = ICHAR_STD) COMENT

REAL DATE, COMENT, VPSTTL, BDYTTL, BLTTTL, PLTTL, BAGTTL,

& SEG, JOINT

DIMENSION DATE(3), COMENT(40), VPSTTL(20), BDYTTL(S),
& BLTTTL(5,8), PLTTL(5,MAXPLN), BAGTTL(S,6),
& SEG (MAXSEG) , JOINT (MAXJINT)

COMMON /TITLES/ DATE, COMENT, VPSTTL, BDYTTL, BLTTTL, PLTTL,
* BAGTTL, SEG, JOINT, CGS, JS

!C*************************i‘**

1C
'c
'c
1C
1c
e

1c
1c
'c
Xe
IC

'C
1c
IC
'C

/TMPVS2/

COMMON/TMPVS2/ FREE

!C***********************i**

/VPOSTN/
NUMVEH = number of vehicles
INTEGER (KIND = INTEGER_STD) NUMVEH

COMMON /VPOSTN/.ZPLT, SPLT, AXV, VATAB, VT0, VDT, TIMEV, OMEGV,
* NVTAB, NUMVEH, IVREF

!C***'k***t**********************

e
tc
'C

1c
'c
tc
tC

/WINDFR/

INTEGER (KIND = INTEGER_STD)

& IWIND, MWSEG, NFVSEG, NFVNT, MOWSEG, MOWELP,
& NFORCE

DIMENSION IWIND(MAXSEG), MWSEG(7,MAXSEG),

& NFVSEG (MAX_FOR_TORQ) ,

& NFVNT (MAX_FOR_TORQ) , MOWSEG (MAXSEG, MAXSEG) ,
& MOWELP (MAXSEG, MAXSEG)

REAL (KIND = IREAL HIGH) WTIME, QFU, QFV, WF
DIMENSION WTIME (MAXSEG), QFU(3,MAX_FOR_TORQ),
& QFV (3,MAX_FOR_TORQ), WF (3, MAXSEG)

COMMON /WINDFR/ WTIME, QFU, QFV, WF, IWIND, MWSEG, NFVSEG,
* NFVNT, MOWSEG

!C******************************i***

'c
IC
IC

Ic
tc
tc
1C

/XTRA/

INTEGER (KIND = INTEGER_STD) NN, NELP, MELL
DIMENSION MELL(MAXELP)

REAL (KIND = IREAL STD) P1S, P2S, P3S, P4S
DIMENSION P1S(3,MAXELP), P25(3,MAXELP), P3S(3,MAXELP),

& P4S (3, MAXELP)

COMMON /XTRA/ NN, NELP, MELL, P1S, P2S, P35S, P4S

!C*******************t*****************************t**************************

!C*****'k**

1c

|
|

1c
i 1C
|

|

|

This module contains variables that are shared amongst the
following Airbag subroutines:

81

1c

1c /AIRBAG_TEMPVS/
X
REAL (KIND = IREAL STD)
& TMP, TMP1, TORQ, FORCE, TORA,
& TQB, FRB, VOL, DELF, VOLP, FRA
DIMENSION TMP(9), TMP1(3),TORQ(3), FORCE(3,5), TORA(3,5),
& TQB(3,10), FRB(3,10), VOL(10), DELF(3),
& VOLP(4,5), FRA(4,5)
tc
1c COMMON/TEMPVS/ TMP, TMP1l, TORQ, FORCE, TORA,
1c * TQB, FRB, VOL, DELF, VOLP, FRAC
'c
1c COMMON/TEMPVS/ TMP(9),TMP1(3),TORQ(3),FORCE(3,5),TORA(3,5),
tc * TQB(3,10),FRB(3,10),VOL(10) ,DELF(3),VOLP(4,5),FRA(4,5)
1c NOTE: THIS COMMON/TEMPVS/ IS SHARED BY AIRBAG AND AIRBGG.
1c
!c**'k*******************************i*****************************'k***********
tc
1c /BELT_TEMPVS/
1c .
Ic This module replaces the /TEMPVS/ shared by Subroutines
1C BELTRT and BELTG
e
1C NOTE: BELTRT AND BELTG SHARE FIRST PART OF TEMPVS
tc
REAL (KIND = IREAL_HIGH)
& APA, UVA, DLGA, UAA, APB, UVB, DLGB, UBB
DIMENSION APA(3), UVA(3), APB(3), UVB(3)
'c
1c COMMON/TEMPVS/ APA(3),UVA(3),DLGA,UAA,APB(3),UVB(3),DLGB, URB
'c * ,TA(3),TB(3),TC(3),UP(3),B(3)
1c * ,UC(3) ,AX(3) ,XE(3) ,BX(3),ACA(3) ,ACB(3)
1c
!C**
X
1c /CINPUT_TEMPVS/
1c
1c These variables were in a /TEMPVS/ that was shared by Subroutines
ic CINPUT, FDINIT, FINPUT, HINPUT. NF is renamed to NF_FUNCT and
1c MS is renamed to MS_SEG.
X
INTEGER (KIND = INTEGER_STD) NF_FUNCT, MS_SEG
DIMENSION NF_FUNCT(5), MS_SEG(3)
tc
CHARACTER (LEN = 4, KIND = ICHAR_STD) KTITLE
CHARACTER (LEN = 20, KIND = ICHAR_STD) FUNC_TITLE
DIMENSION FUNC_TITLE (MAX_FUNC+1), KTITLE(31)
1c
1c NOTE: THIS IS SHARED BY SUBS CINPUT, FINPUT, HINPUT AND FDINIT.
1c also used by Subroutine KINPUT
1c

1c COMMON/TEMPVS/ JTITLE(S,51),NF(5),MS(3),KTITLE(31)
Ic REAL JTITLE,KTITLE

1c
!C*******************************t**
1c
1c /DAUX_TEMPVS/
1c
IC Note: this /TEMPVS/ is shared by DAUX11l, DAUX12, DAUX22,
1c DAUX31, DAUX32, and DAUX33.
1c
INTEGER (KIND = INTEGER STD) IJK, IJ, NQ2§
DIMENSION IJK({MAXRHS, MAXRHS)
1c
REAL (KIND = IREAL HIGH) C, RHS
DIMENSION C(3,3,MAXCMX), RHS (3, MAXRHS)
ic

1c LOGICAL*]l FREE
1C COMMON/TEMPVS/ C(3,3,MAXCMX) , RHS (3, MAXRHS) , IJK (MAXRHS, MAXRHS) ,

1c b I1J,NQ2S

Ic COMMON/TMPVS2/ FREE (MAXJNT)
el

1C /TEMPVS/

1c

1C INTEGER JTMPVS

iIc DIMENSION JTMPVS (MAXTMP)
1C

1c COMMON /TEMPVS/ JTMPVS

1c

!C**

'C

Ic /HEDING_TEMPVS/

1c

IC Note: Subroutines POSTPR, HEDING,’and HEDINGX shared this
Ic COMMON /TEMPVS/.

'c

'Cc SEE COMMENT IN POSTPR ABOUT FIRST DIMENSION OF PLDATA.

Ic

INTEGER (KIND = INTEGER_STD) NOPL, MOPL, M1PL, M2PL
DIMENSION NOPL (MHEDNG), MOPL(MHEDNG), M1PL(MHEDNG), M2PL (MHEDNG)

IC
REAL (KIND = IREAL_HIGH) TDATA
DIMENSION TDATA(14,MAX_NUM_TTH)
1c
REAL (KIND = IREAL STD) USEC, ZTTH
DIMENSION USEC(MAX LN _PPAGE), ZTTH(14,MAX_LN_PPAGE,MAX_NUM_TTH)
1C
CHARACTER (LEN = 4, KIND = ICHAR_STD) HEAD
DIMENSION HEAD (20)
'c
tc As was in Subroutine HEDING.
Ic COMMON/TEMPVS/ TDATA(14,65) ,HEAD(20) ,NOPL (MHEDNG) , MOPL (MHEDNG) ,
Ic * M1PL (MHEDNG) ,USEC (45) ,2TTH (14,45,65),
1c * M2PL (MHEDNG)
1C
1C As was in Subroutine POSTPR.
tC COMMON/TEMPVS/ TDATA(14,65) ,HEDATA (3*MHEDNG+20) ,
tC *) USEC({45),Z2TTH(14,45,65) ,M2PL (MHEDNG)
Ic

!c**

iIC

Ic /HRN_TEMPVS/

1Cc

1c The variables were in a /TEMPVS/ that was shared by Subroutines
1c HPTURB, HBPLAY, HBELT, and HSETC. The following variables
'c were renamed:

IC

1c B to B_HRN E to E_HRN FP to FP_HRN

1c S to S_HRN FCE to FCE_HRN RHS to RHS_HRN
H T to T_HRN FR to FR_HRN C to C_HRN
tc R to R_HRN ZR to ZR_HRN IJK to IJK HRN
tc V to V_HRN TR to TR_HRN NOLD to NOLD_HRN
tc Tl to T1_HRN BL to BL _HRN

1c T2 to T2_HRN FB to FB_HRN

1c

INTEGER (KIND = INTEGER_STD } IJK HRN, NOLD_HRN
DIMENSION IJK_HRN(54,54), NOLD_HRN (2, MAXHPT)

e
REAL (KIND = IREAL_HIGH)
& B_HRN, S_HRN, T_HRN, R_HRN, V_HRN, T1_HRN,
& T2_HRN, E_HRN, EDOT, FCE_HRN, FR_HRN, ZR_HRN,
& TR_HRN, U_HRN, PTLOSS, BL_HRN, FB_HRN, FP_HRN,
& OLDBB, RHS_HRN, C_HRN
DIMENSION B_HRN(3,3,3), S_HRN(3,3), T _HRN(3), R_HRN(3),
& V_HRN(3), T1_HRN(3), T2_HRN(3), E_HRN(3,3,MAXHPH),
& EDOT (3,MAXHPH) , FCE_HRN(3,MAXHPH), FR_HRN(3,MAXHPH),
& ZR_HRN (3,MAXHPH) , TR_HRN (3,MAXHPH), U_HRN(3,MAXHPH),
& PTLOSS (2, MAXHPT) , BL_HRN (MAXHPH), FB_HRN (MAXHPH) ,
& FP_HRN (MAXHPH) , OLDBB(MAXHPT), RHS_HRN(3,54),
& C_HRN(3,3,200)

1c

83

X THIS COMMON/TEMPVS/ IS SHARED BY HPTURB, HBPLAY, HBELT AND HSETC.

1c
1c
tc COMMON/TEMPVS/ B(3,3,3),8(3,3),T(3),R(3),V(3),T1(3),T2(3),
1c * E(3,3,50),EDOT(B,SO),FCE(B,SO),FR(B,SO),ZR(B,SO),
X * TR(3,50),U(3,50),PTLOSS(2,100),BL(SO),FB(SO),FP(SO),
1c * OLDBB(lOO),RHS(3,54),C(3,3,200),IJK(54,54),NOLD(2,100)
1c
tc BLOSS and HLOSS are defined as equivalenced with C for Subroutine
1c HPTURB.
tc
REAL (KIND = IREAL HIGH) BLOSS, HLOSS
DIMENSION BLOSS (2, MAXHBLT), HLOSS (2, MAXHRN)
1c
EQUIVALENCE (BLOSS(1,1), C_HRN(l,l, 1)),
& (HLOSS(1,1), C_HRN(l,l,lO))
tc
!C**
1c
tc /PLELP_TEMPVS/
'c .
1c This COMMON/TEMPVS/ is shared by PLEDG, PLELP, PLSEGF, and
1c SEGSEG.
Ic
INTEGER (KIND = INTEGER_STD) MCF_PLP, NCF_PLP
1c
REAL (KIND = IREAL HIGH)
& AMR_PLP, DMNT PLP, DMNWN_PLP, FM_PLP, PEN_DIST,
& R_PLP, RLM_PLP, RLN_PLP,
& RM_PLP, RMD_PLP, RN_PLP, RND_PLP,
& T_PLP, TF_PLP, TH_PLP, TM_PLP, VR_PLP,
& WNM_PLP, XH PLP, XMM_PLP, XMN_PLP, XNC_PLP
DIMENSION R_PLP(3), DMNT_PLP(B,B), DMNWN_PLP(3),
& - RLM_PLP(3), RLN_PLP(3), RM_PLP(3),
& RMD_PLP (3), RN_PLP(3), RND_PLP(3),
& T_PLP(3), TH_PLP(3), TM_PLP(3), VR_PLP(3),
& WNM_PLP(B), XH_PLP(3), XMM_PLP(B),
& XMN_PLP(3), XNC_PLP(3)
1c
1c As found in PLEDG; shared with PLELP-PLSEGF
tc COMMON/TEMPVS/DMNT(3,3),DHNT(3;3),DUM1(18),TM(B),R(3),RM(3),
Ic X DUM2(9),UP(3),VP(3),U(3),V(3),EU(3),EV(3),ET(3),
i1C X A(2),B(2),CC(2),DUM4(12),TH(3),XH(3),RMD(3),RND(3),
1C X APT(2,2,2),AC(2,2),BC(2,2),AFP,E(Z,Z),DELT,AREA,
1c X AB,BB,BT(Z),XNC(B),UH(3),P,AMR,FM,T4(3),ALIM(Z,Z)
1c
'c
1c As found in PLELP
IC COMMON/TEMPVS/DMNT(B,B),TEMP(3,3),B(3,3).XMN(3),RLN(3),XMM(3):
1c * TM(3),R(3),RM(3),DMNWN(3),RLM(3),RN(3),VMN(3),VR(B),
c * WNM(3) ,WCM(3) ,WCN (3) , VREL(3) ,FFM(3) ,FR(3),TQM(3),
1C * TON (3) , TQNT (3),T(3) ,H(3) ,TH(3) ,XH(3) ,RMD(3) ,RND(3),
1c * TD(3),TT4(3,4),TT5(3,4),XNC(B),UH(3),P,AMR,FM,CF,
1c * VRM, VRT, VRTS, VRTEST, TF, ELOSS, MCF, NCF
tc
1c As found in PLSEGF; is shared by PLELP, PLSEGF and SEGSEG.
tc DIMENSION DMNT(3,3),TEMP(3,3),B(3,3),XMN(B),RLN(3),XMM(3),
1c * TM(3),R(3)},RM(3) ,DMNWN (3) ,RLM(3) ,RN(3),VMN(3),VR(3)},
1c * WMN(3),WCM(3),WCN(3),VREL(3),FFM(B),FR(3),TQM(3),
1c * TQN(B),TQNT(3),T(3),H(3),T1(3),T2(3),RMD(3),RND(B)
1c * TD(3),TT4(3,4),TT5(3,4),T3(3),T4(3),P,AMR,FM,CF,
!1c * VRM,VRT,VRTS,VRTEST,TF,ELOSS,MCF,NCF,TS(3},T6(3)
tc As found in SEGSEG
1C COMMON/TEMPVS/DMNT(3,3),TEMP(3,3),B(3,3),XMN(3),RLN(3),XMM(3),
1 * TM(3) ,R(3) ,RM(3) ,DMNWN(3) RLM(3) ,RN(3) VMN(3),VR(3),
Ic * WNM(3),WCM(3),WCN(3),VREL(3),FFM(3),FR(3),TQM(B),
1c * TON(3) , TONT(3) ,T(3) ,H(3),T1(3),T2(3),RMD(3) ,RND(3},
1c * TD(3),TT4(3,4),TT5(3,4),T3(3),T4(3),P,AMR,FM,CF,
tc * VRM,VRT,VRTS,VRTEST,TF,ELOSS,MCF,NCF,TS(3),T6(3)
1C

'c As found in HYEST.

1C COMMON/TEMPVS/D12 (3,3) ,A(3,3),B(3,3),XMN(3),RLN(3),XMM(3),

e * T(3),R(3),C(3,3),V(7)
'Cc
1c As found in HYLPX.
tc COMMON/TEMPVS/D12(3,3),P(3,3),Q(3,3),XMN(3),RLN(3),XMM(3),
1c * R(3),H(3),D(3,3),V(7)
Ic
1c As found in HYNTR.
1C COMMON/TEMPVS/D12(3,3),A(3,3),B(3,3),XMN(3),RLN(3),XMM(3),
'C * AZ(3),R(3)
IC
X
!C**
IC
i1c /VIN_TEMPVS/
IC
1C The first 2 lines of /TEMPVS/ were shared by VINPUT, VINO1l2,
1c VINO34, VSPLIN and VINTST.
1C
REAL (KIND = IREAL_HIGH)
& ANGLE, ATAB, AX, DVEH, VMEG, VMEGD,
& X0, XACOMP, XDOTO
DIMENSION ANGLE (3), ATAB(15,MAXVT3), AX(3), DVEH(3,3),
& VMEG (3), VMEGD(3), X0(3), XACOMP(3),
& XDOTO0 (3)
[Xe)
1C COMMON/TEMPVS/ X0 (3),XDOTO (3) ,XACOMP(3),AX(3) ,ANGLE(3),
1C * ATAB(15,MAXVT3),DVEH(3,3),VMEG(3), VMEGD (3)
1c
1c

!c************************i**t******

tC

'c New global variables that had been local variables in Subroutine
'c INPUT_VEHICLE. They are the linear and angular initial
tc parameters for segments that have been specified to be vehicles.
Ic

REAL (KIND = IREAL_HIGH)

& RINIT_SEGLP, RINIT_SEGLV, RINIT_ SEGLA,

& RINIT D, RINIT_WMEG, RINIT WMEGD

DIMENSION RINIT D(3,3,MAXSEG), RINIT_SEGLA (3,MAXSEG),

& RINIT_ SEGLP (3,MAXSEG), RINIT_SEGLV(3,MAXSEG),

& RINIT_ WMEG(3,MAXSEG), RINIT WMEGD (3, MAXSEG)

1C

T R R e e et e et e s Al SR Rt
1C
END MODULE MODULE_STANDARD

85

A.2 MODULE_FLEXIBLE Source Code

MODULE MODULE_FLEXIBLE

1c
1c Rev. V.2 06/01/2000
1C
1c
1c This module contains the COMMON BLOCKs related to the flexible
1c segment option.
Ic
USE MODULE_STANDARD, ONLY:
& INTEGER_STD, IREAL HIGH, MAXSEG, MAXJNT, MAXDEF,
& MXMOD, MXNOD
1c
IMPLICIT NONE
1c
'C
!C*******
Ic
Ic /FXBODY/
1c
REAL (KIND = IREAL_HIGH) QNOD, WNOD, FMODES, FIK
DIMENSION QNOD (3,MXNOD, 3*MAXDEF), WNOD (MXNOD, MAXDEF),
& FMODES (6 *MXNOD, MXMOD, 3*MAXDEF) , FIK(3,MXNOD,MAXDEF)
1c
Ic COMMON /FXBODY/ QNOD, WNOD, FMODES, FIK DEFJNT
1C
c
!c*******
'c
Ic /FXCOEF/
tc
REAL (KIND = IREAL_HIGH)
& WPI, PHPI, UlP, A21P, U2P, UAP, AllP, Al2P,
& A22P, AA1P, AA2P, BlA, B2A, AllF, A22F
DIMENSION WPI (3,3,MAXDEF), PHPI(3,3,MAXDEF), UlP(3,MAXDEF), DEFORM
& A21P(3,3,2*MAXJINT), U2P(3,MAXDEF), UAP(MXMOD,MAXDEF), DEFORM
& A11P(3,3,2*MAXJINT), Al2P(3,3,2*MAXJINT), DEFORM
& A22P(3,3,2*MAXJINT), AA1P(MXMOD, 3, 2*MAXJINT) , DEFORM
& AA2P (MXMOD, 3, 2*MAXJINT) , B1lA(3,MXMOD, 2*MAXJNT) , DEFORM
& B2A (3, MXMOD, 2*MAXJINT) , AllF(3,3,2*MAXJNT), DEFORM
& A22F (3, 3,2*MAXJINT) DEFORM
1c
1C COMMON /FXCOEF/ WPI, PHPI, UlP, A21P, U2P, UAP, AllP, Al2P,
Ic * A22P, AA1lP, AA2P, BlA, B2A, AllF, A22F
1C
[
!c********
'c
Ic /FXFRC/
'c
INTEGER (KIND = INTEGER_STD)}’ NODSD, NODFR
DIMENSION NODSD(2,20), NODFR(S5)
Ic
REAL (KIND = IREAL_HIGH) PURTQ, YFB
DIMENSION PURTQ(3,MAXDEF), YFB(3,MAXDEF)
1c
1c COMMON /FXFRC / PURTQ, YFB, NODSD, NODFR
1c
!c********
1C
IC /FXINT/
1C
INTEGER (KIND = INTEGER_STD) NEQP
tc
1c COMMON /FXINT / NEQP

'c

!C********

Ic
Ic /FXJROT/
ic

INTEGER { KIND = INTEGER_STD) NTDEF, IDSEG, IDJNT, JROUT

DIMENSION IDSEG (MAXDEF), IDJNT (2,MAXDEF), JROUT (MAXDEF)
1c

REAL (KIND = IREAL HIGH) ROTJ, ROTVJ, DNP, ANF, CN

DIMENSION ROTJ (3,2*MAXJNT), ROTVJ(3,2*MAXJINT),

& DNP (3,3, 2*MAXJINT) , ANF(3,3,2*MAXJNT), DEFJNT

& CN (3, 2*MAXJNT)
iIc
i1c COMMON /FXJROT/ ROTJ, ROTVJ, DNP, ANF, CN, NTDEF, IDSEG, IDJNT
1c
!c*******
e
i1c /FXNVEL/
iIc

REAL (KIND = IREAL HIGH) ASAD, WNP

DIMENSION ASAD (3,2*MAXJNT), WNP(3,2*MAXJINT)
1c
Ic COMMON /FXNVEL/ ASAD, WNP
Ic
!C*******
iIc
e /FXouT/
1c

INTEGER (KIND = INTEGER_STD) NFBPR, NODPR

DIMENSION NFBPR(20,3), NODPR(20,3)
1c

REAL { KIND = IREAL HIGHK) T91, T92

DIMENSION T91(3), T92(3)
Ic
1c COMMON /FXOUT / T91, T92, NFBPR, NODPR
i1c
!C*******
1c
¥e: /FXSING/
1c

REAL (KIND = IREAL HIGH) TAM, RAM

DIMENSION TAM(3,MXMOD,MAXDEF), RAM(3,MXMOD, MAXDEF)
1Ic
IC COMMON /FXSING/ TAM, RAM
iIc
!c********
1c
1c /FXVAR/
1c

INTEGER (KIND = INTEGER_STD) NFBOD, IBODN, NNOD, NMOD, NODJ

DIMENSION IBODN (MAXDEF), NNOD(MAXDEF), NMOD (3*MAXDEF),

& NODJ (3, 2, MAXSEG)
t1c

REAL (KIND =IREAL HIGH) RSTF, RDMP, TTM, SAIM, AMP, AMV, AMA

DIMENSION RSTF (MXMOD,MAXDEF), RDMP (MXMOD,MAXDEF), TTM(MAXDEF),

& SAIM (3, MXMOD, MAXDEF) , AMP (MXMOD, 3*MAXDEF),

& AMV (MXMOD, 3*MAXDEF) , AMA (MXMOD, 3 *MAXDEF)
ic
1c COMMON /FXVAR/ RSTF, RDMP, TTM, SAIM, AMP, AMV, AMA, NFBOD, DEFJNT
1c * IBODN, NNOD, NMOD, NODJ DEFJNT
1c
!C********
1c
1c /FXXTRA/
1c

REAL (KIND = IREAL HIGH) HBO, HTO, DBN, FMODM

DIMENSION HBO (3,2*MAXJNT), HTO(3,3,2*MAXJINT),

& DBN (3,3, 2*MAXJINT) , FMODM (3, MXMOD, 2*MAXJNT)
Ic
iIc COMMON /FXXTRA/ HBO, HTO, DBN, FMODM
Ic
Ic

87

!C********

1Cc
1c
1c

1c
te
e
1c
1c

/OLDDAT/
REAL (KIND = IREAL_HIGH) AMPOLD, FMODO, ROTOLD
DIMENSION AMPOLD (MXMOD, MAXDEF) , FMODO (3, MXMOD, 2*MAXJNT) ,
& ROTOLD (3, 2*MAXJINT)

COMMON /OLDDAT/ AMPOLD (MXMOD,MAXDEF), FMODO (3,MXMOD,2*MAXJINT),
& ROTOLD (3, 2*MAXJINT)

!C*********************

!C********************* "

1c
1c
1C

Parameters associated with the flexible/deformable segments.

REAL (KIND = IREAL HIGH) SMALL START
PARAMETER (SMALL_START = 1.0E12_IREAL_HIGH)

END MODULE MODULE_FLEXIBLE

88

A.3 MODULE_WATER Source Code

MODULE MODULE_WATER
!
;g Rev. V.2 06/01/2000
!
;g This MODULE contains the water force related COMMON BLOCKs.
1
e USE MODULE_STANDARD, ONLY:

& INTEGER_STD, IREAL HIGH, MAXELP, MAXSEG ! parameters
'tc
IMPLICIT NONE
tC
IC SAVE all variables, since MODULE WATER is not referenced by
IC _MAIN, making it possible for these variables to become
'c undefined during the execution of the program, when no
1c subroutines are being executed that reference this module.
1c
SAVE
'1c
!C********
1C
'1c /ELPDAT/
1c
INTEGER (KIND = INTEGER_STD) NELPS
iC
REAL (KIND = IREAL_HIGH) DELP
DIMENSION DELP (3,3, MAXELP)
1c
tc COMMON /ELPDAT/ DELP, NELPS
tc
!C********
tc
1c /WATGRD/
i1C
REAL (KIND = IREAL_HIGH) RPH, RNX
Ic
IC COMMON /WATGRD/ RPH, RNX
Ic
!C********
tc
'1C /WATINF1/
1c
INTEGER (KIND = INTEGER_STD)
& MOUTHS, MOUTHE, NEBODY, NSBODY, NWATER, NPFD, NEW,
& NWSE, NELPFD, KPFD
DIMENSION NWSE (2,MAXELP), NELPFD(5), KPFD(25)
1c
REAL (KIND = IREAL_HIGH)
& BDPFD, PFDWT, DMOUTH, COED, TBDV, COEL, CADDM
DIMENSION BDPFD(30,25), PFDWT(5,5), DMOUTH(3),
& COED (MAXELP+25), COEL (MAXELP+25}, CADDM (6, MAXELP+25)
1C
1C COMMON /WATINF1/ BDPFD, PFDWT, DMOUTH, COED, TBDV, COEL,
1c * CADDM, MOUTHS, MOUTHE, NEBODY, NSBODY,
1c * NWATER, NPFD, NEW, NWSE, NELPFD, KPFD
1Cc
!C********
1c
Ic /WATINF2/
Ic
INTEGER (KIND = INTEGER_STD) NPE
Ic
REAL (KIND = IREAL_HIGH) DPFD
DIMENSION DPFD(3,3,25)
iIc
1c COMMON /WATINF2/ DPFD, NPE
1Cc

89

!C********

1c
Ic /WAVEDAT/
1c
INTEGER (KIND = INTEGER_STD) ISPD, NWAVES
Ic
REAL (KIND = IREAL HIGH)
& WOFSET, WFRAME, WD, WDEP, WNUM, WAMP, WDIR,
& WPHS, FREQ, SWKH, WGAM, WSPD
DIMENSION WOFSET(3), WFRAME(3), WD(3,3), WNUM(10), WAMP(10),
& WDIR(10), WPHS(10), FREQ(10), SWKH(10)
'c
Ic COMMON /WAVEDAT/ WOFSET, WFRAME, WD, WDEP, WNUM, WAMP, WDIR,
Ic * WPHS, FREQ, SWKH, WGAM, WSPD, ISPD, NWAVES
tc
!C********
1C
1c /WFACOP/
1c
INTEGER (KIND = INTEGER_STD) NSEQN, NELL, NELOUT, ITYPE
DIMENSION NELL(S), NELOUT(5,2,MAXELP+25), ITYPE(6)
IC
REAL (KIND = IREAL HIGH) BRI, TENY, WAREA, DISTM, ALFAl, ALFA2
[
1c COMMON /WFACOP/ BRI, TENY, WAREA, DISTM, ALFAl, ALFA2, NSEON,
'c * NELL, NELOUT, ITYPE
1c
!c********
1c
'c /WMASS/
1c This COMMON BLOCK was in Subroutine ADDMAS and DAUX
Ic but not in BLOCK DATA of version V.1.
1c
REAL (KIND = IREAL HIGH) WX, RWX, WXX, RWXX
DIMENSION WX (3,MAXSEG), RWX(3,MAXSEG), WXX(MAXSEG), RWXX(MAXSEG)
1C
1c common /wmass/ wx {3, MAXSEG) , rwx (3,MAXSEG) , wxx (MAXSEG) ,
1c * rwxx (MAXSEG)
Ic
lc*********
1c
1c /WRESLTS/
1c
REAL (KIND = IREAL_HIGH) BUOY, WEXF, ADDM, DRAG, BVL, AREA
DIMENSION BUOY (6, MAXELP+25), WEXF{6,MAXELP+25),
& ADDM (3, MAXELP+25), DRAG(6,MAXELP+25),
& BVL (MAXELP+25), AREA (MAXELP+25)
'c
IC COMMON /WRESLTS/ BUOY, WEXF, ADDM, DRAG, BVL, AREA
1c
1c
!C*********
Ic
1c This is a temporary module, which contains the /TEMPFD/
1c variables used by the water subroutines ADDMAS, BOYCTR,
1c and WATINP.
'c
Ic Was /TEMPFD/
'c
INTEGER (KIND = INTEGER_STD) KSEG_WATER, KELL, KELT
Ic
REAL (KIND = IREAL_HIGH)
& T2, T5, Pl, CENTW, FL, F1, FF_WATER, WDSE,
& TSN, TN, BET, BTE, E11, E12, E22, Cl1l, S1,
& UU_WATER, VV
DIMENSION T2(3), T5(3), P1(3), CENTW(3), FL(100,6), F1(100,6),
& FF_WATER (6), WDSE(3,3,MAXELP+25), TSN(3}, TN (3),
& UU_WATER(3), VV(3)
1c
Ic

END MODULE MODULE

90

Appendix B — Listings of Subroutine

91

THIS PAGE LEFT BLANK INTENTIONALLY

92

Appendix B.1: Migration of V.1 Subroutines to V.3 Subroutines

(Subroutines that are new to V.3 or have been renamed in V.3 are bolded)

V.1 V.3
ACTUATOR_TORQUE (was USER)

ADDMAS renamed to WATER_ADDED_MASS

ADJUST ADJUST

AIRBAG AIRBAG

AIRBG1 renamed to INPUT_AIRBAGS

AIRBG3 AIRBG3

AIRBGG AIRBGG

APPLY APPLY

BELTG BELTG

BELTRT BELTRT

BGG BGG

BINPUT deleted

BLKDTA BLKDTA

BLOCKDTA deleted

BOYCTR BOYCTR

CFACTT CFACTT

CHAIN CHAIN
CHECK_COMMENT
CHECK_HIGH_VALUE
CHECK_ROT_SEQUENCE
CHECK_ROTATION_ORDER

CHKREF CHKREF

CINPUT renamed to INPUT_FUNCTIONS

CMPUTE CMPUTE

COMPSYS deleted

CONTCT CONTCT
CONVERT_TIME

CROSS CROSS

CUTARE CUTARE
DATE_TIME

DAUX DAUX

DAUX11 DAUX11

DAUX12 DAUX12

DAUX22 DAUX22
DAUX22_SuB

DAUX31 DAUX31

DAUX32 DAUX32

DAUX33 DAUX33

DAUX44 DAUX44

DAUX55 DAUX55
DAUX_SETUP
DEF_NEW_CUBIC
DEF_NEW_QUADRATIC

DHHPIN DHHPIN

DINTG DINTG
DINTG_BACKUP
DINTG_HALF

DOT31 DOT31

DOT33 DOT33

DOTT31 DOTT31

DOTT33 DOTT33

DOTVEC DOTVEC

DRCIJK DRCIK

DRCQUA DRCQUA

DRCYPR DRCYPR

DRGCHK renamed to WATER_DRAG_CHK

DRIFT DRIFT

DSETD DSETD

DSETQ DSETQ

DSMSOL DSMSOL

DzpP DzP

VA

EDEPTH
EFUNCT
EJOINT

ELARE3
ELAREA
ELONG
ELTIME
EQUILB

ETA
EULRAD
EVALFD

FDINIT
FDUX11
FDUX12
FDUX22
FILES
FINPUT
FINTVC
FLXSEG
FNAME
FNTERP

FRCDFL
FSETUP
FSMSOL

FSPDMP

FUNCHK
FXCAHW
FXCBLT
FXCPLS
FXINPT
FXMACC
FXMASS
FXMODD
FXMODV
FXMODVO

GLOBAL

HBELT
HBPLAY

HEDING

HERRON

93

V.3

EDEPTH

EFUNCT

EJOINT
EJOINT_TORQUE
ELARE3

deleted

ELONG

E_ELTIME (renamed)
EQUILB
EQUILB_SOLVE
EQUILB_SOLVE_SUB
renamed to WAVE_HEIGHT
EULRAD

EVALFD
EVALFD_INTEGRAL
EVALFD_POLY
EVALFD_TABLE

FDINIT

FDUX11

FDUX12

FDUX22

renamed to INPUT_FILES
deleted

FINTVC

FLXSEG

FNAME

FNTERP
FRAME_WINDOW
FORCE_TORQUE
FRCDFL

FSETUP

FSMSOL
FSMSOL_STOP
FSPDMP
FUNC_RATE_DEP
FUNCHK
FXCAHW

FXCBLT

FXCPLS

renamed to INPUT_DEFORM
FXMACC

FXMASS

FXMODD
FXMODV
FXMODVO

GET_MONTH_NAME
GLOBAL

HBELT
HBPLAY
HBPLAY_POINTS
HEDING
HEDING_ACTUATORS
HEDING_ANG_DISPL
HEDING_BODY_PROP
HEDING_FORCES
HEDING_HCARDS
HEDING_JNT_PARM
HEDING_JOINT_FORCES
HEDING_WATER
HEDING_WIND

HERRON

V.1
HICCSI
HINPUT

HPTURB
HSETC

HYAFB
HYBND
HYBOX
HYDAD
HYEST
HYFCN
HYLIM

HYLPR

HYLPX
HYNTR
HYPEN
HYREA
HYSOL
HYVAL
HYVBX
HYVFN

IMPLS2
IMPULS
INTIAL

V.3 A
HICCSI
renamed to INPUT_HARNESS
HPOINT_DROP
HPTURB
HPTURB_SETUP INPROJ
HSETC INRTIA
HSETC_SuB INTANG
HYAFB INTERS
HYBND
HYBOX INTLIN
HYDAD INVERS
HYEST)
HYFCN JNTENC
HYLIM JNTROT
HYLPR
HYLPR_PIVOT KINPUT
HYLPX
HYNTR LTIME
HYPEN LUDCMP
HYREA
HYSOL
HYVAL
HYVBX LUPIVT
HYVFN LuUsuB
IMPLS2 MAIN_ATB
IMPULS MAT31
renamed to INPUT_INITIAL_CONDITIONS MAT33
INITIALIZE

INPUT_ACARDS
INPUT_AIRBAG_FORCE

INPUT_AIRBAGS (was AIRBG1) MULPLY
INPUT_BCARDS

INPUT_BELT_FORCE NUMCHR
INPUT_BELTS

INPUT_CONSTRAINTS ORTHO
INPUT_DCARDS OUTPUT

INPUT_DEFORM (was FXINPT)
INPUT_ELLIPSOIDS
INPUT_EQUILB

INPUT_FCARDS

INPUT_FILES (was FILES)
INPUT_FLEX
INPUT_FORCE_TORQUE
INPUT_FUNCTIONS (was CINPUT)
INPUT_GLOBALGRAPHIC_FORCE

INPUT_H10_CARDS PANEL
INPUT_H11_CARDS PDAUX
INPUT_H1_H3_CARDS PFDBOY
INPUT_H4_H9_CARDS PFDFRC
INPUT_H7_CARDS PFDWXC
INPUT_HARNESS (was HINPUT) PLEDG
INPUT_HCARDS PLELP
INPUT_INITIAL_CONDITIONS (was INTIAL) PLREA
INPUT_JOINT_TORQUE PLSEGF
INPUT_JOINTS POSTPR
INPUT_LINEAR (was INTLIN) PRINT
INPUT_ORIENT (was INTANG) PRNCIPAL
INPUT_PER_FLOAT_DEV

INPUT_PLANE_FORCE QSET
INPUT_PLANES QUAT
INPUT_PROJANG (was INPROJ)

INPUT_ROBOTICS (was ROBINP) RCRT
INPUT_SEG_SEG_FORCE

INPUT_SPRING_DAMPERS ROBINP
INPUT_SYMMETRY ROT
INPUT_VEHICLE (was VINPUT) ROTATE

INPUT_WATER (was WATINP)
INPUT_WATER_ELLIPSOIDS

94

V.3
INPUT_WATER_OUTPUT
INPUT_WAVES
INPUT_WIND
INPUT_WIND_FORCE
renamed to INPUT_PROJANG
INRTIA

renamed to INPUT_ORIENT
INTERS

INTERS_SOLVE

renamed to INPUT_LINEAR
INVERS

JNTFNC
JNTROT

deleted

L_LTIME (renamed)

LUDCMP

LUNUM_FORCES
LUNUM_HCARDS
LUNUM_WATER (was WATSET)
LUPIVT

LUsuUB

MAIN_ATB

MAT31

MAT33
MODULE_FLEXIBLE
MODULE_STANDARD
MODULE_WATER
MULPLY

NUMCHR

ORTHO
OUTPUT

OUTPUT_BODY_PROP
OUTPUT_FORCES
OUTPUT_H9_CARDS
OUTPUT_HCARDS
OUTPUT_JOINTS
OUTPUT_LUNUM
OUTPUT_SETUP
OUTPUT_WATER (was WATOUT)

PANEL
PDAUX
PFDBOY
PFDFRC
PFDWXC
PLEDG
PLELP
PLREA
PLSEGF
POSTPR
PRINT
PRNCIPAL

QSET
QUAT

RCRT

READ_TAPE_8

renamed to INPUT_ROBOTICS
ROT

ROTATE

WA
SEGSEG
SETUP1
SETUP2
SIMPSN
SINPUT
SOLVA
SOLVR
SPDAMP
SPLINE
SPRNGF

TILDE
TRIGFS
TRNPOS

U1ASC
U1ASCD
U1ASCH
U10LD
UNIT1
UNTVEC
UPDATE

UPDFDC
UPDPFD
USER

VECANG
VECMAG
VEHPOS
VINITL
VINO12
VINO34
VINPUT
VINTST
VISCOS
VISPR

VPATH
VPATH2
VSPLIN

WATHED
WATINP
WATOUT
WATSET
WAVEL
WBAREA
WELFOR
WEXPH!
WFORCE

WINDY
XDY
YPRDEG

V.3
SEGSEG
SETUP1
SETUP2
SIMPSN
deleted
SOLVA
SOLVR
SPDAMP
SPLINE
deleted

TILDE
TRIGFS
TRNPOS

U1ASC

U1ASCD

U1ASCH

U10LD

UNIT1

UNTVEC

UPDATE
UPDATE_EULER_JOINTS

UPDATE_FRC_DEF_CURVE (was UPDFDC)

UPDATE_JOINTS

UPDATE_PFD (was UPDPFD)
UPDATE_TAB

renamed to UPDATE_FRC_DEF_CURVE
renamed to UPDATE_PFD

renamed to ACTUATOR_TORQUE

deleted
VECMAG
VEHPOS

VINITL

VINO12

VINO34
renamed to INPUT_VERICLE
VINTST

VISCOS

VISPR
VISPR_TORQUE
VPATH

VPATH2

VSPLIN

WATER_ADDED_MASS (was ADDMAS)
WATER_DRAG_CHK (was DRGCHK)
WATER_ELLIP_FORCE (was WELFOR)
WATER_FORCE (was WFORCE)
WATER_PNT_VELOCITY (was WAVEL)
WAVE_HEIGHT (was ETA)

renamed to HEDING_WATER

renamed to INPUT_WATER

renamed to OUTPUT_WATER

renamed to LUNUM_WATER

renamed to WATER_PNT_VELOCITY
WBAREA

renamed to WATER_ELLIP_FORCE
WEXPH!

renamed to WATER_FORCE
WIND_AREA

WIND_GRID

WINDY

XDY
YPRDEG

95

Appendix B.2: V.3 Subroutines by Function

Airbags
AIRBAG

AIRBG3
AIRBGG
BGG
PANEL
RCRT

Contact forces
CONTCT
FXCAHW (*1)

External applied force torque

FORCE_TORQUE

Function _setup evaluation
DEF_NEW_CUBIC

DEF_NEW_QUADRATIC
EVALFD
EVALFD_INTEGRAL
EVALFD_POLY
EVALFD_TABLE

FDINIT

FRCDFL
FUNC_RATE_DEP
FUNCHK
UPDATE_FRC_DEF_CURVE
UPDATE_TAB

Harness_belts
HBELT
HBPLAY
HBPLAY_POINTS
HPOINT_DROP
HPTURB
HPTURB_SETUP
HSETC
HSETC_suB

Hyper_ellipsoids
HYABF
HYBND
HYBOX
HYDAD
HYEST
HYFCN
HYLIM
HYLPR
HYLPR_PIVOT
HYLPX
HYNTR
HYPEN
HYREA
HYSOL
HYVAL
HYVBX
HYVFN

Initialize_subroutines
BLKDTA
EQUILB
EQUILB_SOLVE
EQUILB_SOLVE_SUB
INITIALIZE
ROTATE

Input_subroutines

CHECK_COMMENT
CHECK_ROT_SEQUENCE
CHECK_ROTATION_ORDER
COMPUTE_INIT_ANG_VEL
INPUT_ACARDS
INPUT_AIRBAG_FORCE
INPUT_AIRBAGS
INPUT_BCARDS
INPUT_BELT_FORCE
INPUT_BELTS
INPUT_CONSTRAINTS
INPUT_DCARDS
INPUT_DEFORM
INPUT_ELLIPSOIDS
INPUT_EQUILB
INPUT_FCARDS
INPUT_FILES

INPUT_FLEX
INPUT_FORCE_TORQUE
INPUT_FUNCTIONS

INPUT_GLOBALGRAPHIC_FORCE

INPUT_H1_H3_CARDS
INPUT_H10_CARDS
INPUT_H11_CARDS
INPUT_H4_H9_CARDS
INPUT_H7_CARDS
INPUT_HARNESS
INPUT_HCARDS
INPUT_INITIAL_CONDITIONS
INPUT_JOINT_TORQUE
INPUT_JOINTS
INPUT_LINEAR
INPUT_ORIENT
INPUT_PER_FLOAT_DEV
INPUT_PLANE_FORCE
INPUT_PLANES
INPUT_PROJANG
INPUT_ROBOTICS
INPUT_SEG_SEG_FORCE
INPUT_SPRING_DAMPERS
INPUT_SYMMETRY
INPUT_VEHICLE
INPUT_WATER
INPUT_WATER_ELLIPSOIDS
INPUT_WATER_OUTPUT
INPUT_WAVES
INPUT_WIND
INPUT_WIND_FORCE

Integration subroutines

ADJUST
CMPUTE

DINTG
DINTG_BACKUP
DINTG_HALF

DZP

IMPLS2

IMPULS
INTEGRATE_TIME
QSET

TRIGFS

UPDATE
UPDATE_CONSTRAINTS

96

Joints
ACTUATOR_TORQUE (*2)
APPLY

DHHPIN

DRCIJK

DRIFT

EFUNCT

EJOINT
EJOINT_TORQUE
EULRAD ‘
FINTVC (*1)
FNTERP

GLOBAL

HERRON

JNTFNC (*2)
JNTROT (*1)
UPDATE_EULER_JINTS
UPDATE_JOINTS
VISCOS

VISPR
VISPR_TORQUE

Main program / modules

MAIN_ATB
MODULE_FLEXIBLE
MODULE_STANDARD
MODULE_WATER

Math_utilities

CFACTT
CROSS
DOT31
DOT33
DOTT31
DOTT33
DOTVEC -
DRCQUA
DRCYPR
DSETD
DSETQ
DSMSOL
FSMSOL
FSMSOL_STOP
INVERS
LUDCMP
LUPIVT
LusuB
MAT31
MAT33
MULPLY
ORTHO
QUAT
ROT
SIMPSN
SPLINE
TILDE
TRNPOS
UNTVEC
VECMAG
XDY
YPRDEG

Output subroutines
CHECK_HIGH_VALUE

CHKREF
FNAME

HEDING
HEDING_ACTUATORS
HEDING_ANG_DISPL
HEDING_BODY_PROP
HEDING_FORCES
HEDING_HCARDS
HEDING_JNT_PARM
HEDING_JOINT_FORCES
HEDING_WATER
HEDING_WIND
HICCSI

INRTIA
LUNUM_FORCES
LUNUM_HCARDS
LUNUM_WATER
NUMCHR

OUTPUT
OUTPUT_BODY_PROP
OUTPUT_FORCES
OUTPUT_H9_CARDS
OUTPUT_HCARDS
OUTPUT_JOINTS
OUTPUT_LUNUM
OUTPUT_SETUP
OUTPUT_WATER
POSTPR

PRINT

PRNCIPAL
READ_TAPE_8
U1ASC

U1ASCD

U1ASCH

u10LD

UNIT1

Plane/seqg seal/seq forces
EDEPTH
FXCPLS (*1)
INTERS
INTERS_SOLVE
PLEDG
PLELP
PLREA
PLSEGF
SEGSEG

Simple_belt_forces
BELTG
BELTRT
ELONG
FXCBLT (*1)

Solver_subroutines
CHAIN
DAUX
DAUX_SETUP
DAUX11
DAUX12
DAUX22
DAUX22_SUB
DAUX31
DAUX32
DAUX33
DAUX44
DAUX55
FDUX11 (*1)
FDUX12 (*1)
FDUX22 (*1)
FLXSEG
FSETUP (*1)
FXMACC (*1)
FXMASS (*1)
FXMODD (*1)
FXMODV (*1)
FXMODVO (*1)
PDAUX
SETUP1
SETUP2

Spring_dampers
FSDMP

SPDAMP

System_utilities
CONVERT_TIME
DATE_TIME :
E_ELTIME
FRAME_WINDOW (*3)
GET_MONTH_NAME
L_LTIME

Vehicles
VEHPOS
VINITL
VINO12
VINO34
VINTST
VPATH
VPATH2
VSPLIN

Water forces
BOYCTR
CUTARE
ELARES3
PFDBOY
PFDFRC
PFDWXC
UPDATE_PFD
WATER_ADDED_MASS
WATER_DRAG_CHK
WATER_ELLIP_FORCE
WATER_FORCE
WATER_PNT_VELOCITY
WAVE_HEIGHT
WBAREA
WEXPHI

97

Wind_forces
SOLVA
SOLVR
WIND_AREA
WIND_GRID
WINDY

Notes

*1: Non 1/0 subroutines used only
for deformable body option

*2: Non /O subroutines used only
for joint actuator option

*3: System subroutine used for
the Compagq QuickWin window
setup

THIS PAGE LEFT BLANK INTENTIONALLY

98

Appendix C — Miscellaneous Coding Change Notes

99

THIS PAGE LEFT BLANK INTENTIONALLY

100

APPENDIX C - Miscellaneous Coding Change Notes

This Appendix contains selected notes for some of the modifications made to Version V.1 of
the code. These notes are not meant to be all-inclusive and do not contain notes of all changes.
Please use these notes, the main body of the report, and the comments provided in the code to
obtain a complete understanding of all the changes made to the code. The most significant
changes were to place all of the COMMON BLOCKs from BLOCK_DATA into several modules,
then comment out the COMMON BLOCKS, so that the module only typed and dimensioned the
variables. All calls to these COMMON BLOCKs in all the subroutines and the associated
PARAMETER statements were deleted and replaced with USE-ONLY statements. All local
variables were explicitly typed and dimensioned. All DO loops that terminated on a executable
statement were replaced either with an END DO, if the DO loop was relatively short, or a
numbered CONTINUE statement if the DO loop was long. All nested DO loops that ended on the
same statement were replaced with unique termination statements. DO loop indentation was
also added in some places. A few COMMENT statements were added, mostly blanks, and the
“&” was used to replace the * in the continuation lines. Furthermore, !I's were placed in front of
the C’s in many instances to head towards f95 compliance. In rare instances, the names of local
variables were changed if there existed a variable in one of the modules that had the same name.
This was done to avoid any confusion between local and global variables, as well as to avoid any
potential errors that might occur if a module is used with a USE statement without the ONLY
option. All subroutines were compiled on the DEC (now Compaq) Visual Fortran 6.0.A compiler.
Two compliance checks were made. On the first pass, f90 compatibility was turned on. F95
compatibility was turned on for the second pass.

Modules

MODULE_STANDARD: - created from COMMON BLOCKs for the most part associated with the
standard ATB code. COMMON BLOCKs were commented out, all variables were explicitly
typed and dimensioned. Defined the single-dimensioned arrays XTEST_SNGL and
REGT_SNGL for use by Subroutine DINTG. Used the /TEMPVS/ from DAUX as the
definition of /TEMPVS/. Also added variables MS_SEG, NF_FUNCT, KTITLE and JTITLE
from the /TEMPVS/ that was shared by Subroutines CINPUT, FDINIT, FINPUT, and HINPUT.
Added the /TEMPVS/ that is shared by the harness belt subroutines, and renamed most of
the variables in this common block [see the code for a listing of all the renamed variables].
Defined BLOSS and HLOSS as equivalenced with variables from the harness /TEMPVS/.
Added /COUT/ from Subroutine HEDING, though it was not included in BLOCK DATA. Also
added the /TEMPVS/ that is shared by Subroutines POSTPR, HEDING, HEDINGX, with the
variables as found in Subroutine HEDING. Used the new form of the CHARACTER
assignment for CHARACTERs CGS, JS, and OUTFIL. Added common blocks /BAGDIM/,
/{COUTN/ and /COUTFMT/ from Subroutine U1ASCD, as well as the associated Parameters.
Added /AIRBAG_TEMPVS/ created from the /TEMPVS/ that was shared by Subroutines
AIRBAG and AIRBGG. The COMMON BLOCK was commented out, all variables were
explicitly typed and dimensioned. Added /BELT_TEMPVS/ that was created from the
[TEMPVS/ that was shared by Subroutines BELTG and BELTRT. The COMMON BLOCK
was commented out, all variables were explicitly typed and dimensioned. Only those
variables that were shared by both subroutines [APA, UVA, DLGA, UAA, APB, UVB, DLGB,
UBB]) were place in the module. The remaining variables [TA, TB, TC, UP, B_BELT, UC, AX,
XE, BX, ACA, ACB] were used only in Subroutine BELTG, and hence were made local
variables of that subroutine.

MODULE_FLEXIBLE: - created from COMMON BLOCKSs from the ATB code associated with the
flexible segments. COMMON BLOCKs were commented out, all variables were explicitly
typed and dimensioned.

101

MODULE_WATER: - created from COMMON BLOCKs from the ATB code associated with the
water force option. COMMON BLOCKs were commented out, all variables were explicitly
typed and dimensioned. Included /WMASS/, which was not included in BLOCK_DATA of
Version 5.1. Added /TEMPFD/ that was shared by Subroutines ADDMAS and BOYCTR.
The COMMON BLOCK was commented out, all variables were explicitly typed and
dimensioned. All variables have been included at this point. Variables FF and UU were
renamed to FF_WATER, and UU_WATER, respectively, to avoid any conflicts with the global
variables FF and UU in Module STANDARD. Also renamed KSEG to KSEG_WATER to

avoid conflicts with some local variables.

Selected Modified Version V.1 Subroutines and Functions
ADDMAS. The module MODULE_WATER_TEMP was created to contain the /TEMPFD/
common block, which is shared by Subroutine BOYCTR. Renamed KSEG to KSEG_WATER

to avoid conflicts with similarly named variables in other subroutines

ADJUST - The local variable W was changed to WL to distinguish it from the W array in module
MODULE_STANDARD.

AINPUT - Created from code taken from the main program related to reading in the A cards and
opening files. The use of Hollerith types for TP1, TP8, UF1, and UF8 were replaced with

character constants

AIRBAG - The temporary named COMMON /AIRBAGS_TEMPVS/ was created to handle the
sharing of a /TEMPVS/ between Subroutines AIRBAG and AIRBGG.

AIRBG1 - The local variable MSEG was changed to MSEGL, to avoid a conflict with the array
MSEG that exists in MODULE_STANDARD.

AIRBG3

AIRBGG.
APPLY - Renamed T2 to T2_LCL to avoid conflicts with MODULE_STANDARD

BELTG - The temporary named COMMON /BELTS_TEMPVS/ was created to handle the sharing
of a /TEMPVS/ between Subroutines BELTG and BELTRT. Since [TA, TB, TC, UP, B_BELT,
UC,AX, XE, BX, ACA, ACB] in /TEMPVS/ were used only in BELTG, they were removed from
the module and made local variables of BELTG. The variable B was replaced with B_BELT
to avoid a conflict with the B in MODULE_STANDARD. Also, the local variable GG was
replaced with GG_BELT to avoid a conflict with GG in MODULE_STANDARD. Furthermore,
the local variable BD was replaced with BD_BELTG to distinguish it from the variable BD in

MODULE_STANDARD.

BELTRT - The temporary named COMMON /BELTS_TEMPVS/ was created to handle the
sharing of a /TEMPVS/ between Subroutines BELTG and BELTRT, hence the use of

[TEMPVS/ was deleted.

BGG - Renamed T2 to T2_LCL to avoid conflicts with MODULE_STANDARD. The use of
[TEMPVS/ was eliminated, and the all the variables in /TEMPVS/, except the placing holding
DUMMY array, were included as local variables. The following variables were rename to
avoid confusion with the variables in MODULE_STANDARD: B to B_BGG, AB to AB_BGG,
FF to FF_BGG, IFULL to IFULL_BGG, and VSCS to VSCS_BGG. The variable YFB was
renamed to YFB_BGG to avoid a conflict with the STANDARD_FLEXIBLE module.

BINPUT - The variable array JOINTF was set = 0 directly instead of using two nested DO loops.
The COMMON BLOCK /TEMPVS/ was replaced with local variables. Note that the

102

COMMON BLOCK /FXJROT/ was included with Version 5.1, but no variables are actually
referenced from this common block in BINPUT.

BLKDTA - The COMMON BLOCK /TEMPVS/ was replaced with local variables. Added “D0” to
integer constants, where needed.

BLOCK DATA - replaced by MODULE_STANDARD, MODULE_FLEXIBLE, and
MODULE_WATER.

BOYCTR -.The named COMMON /TEMPFD/, shared between Subroutines ADDMAS and
BOYCTR, was included in MODULE_WATER. Note: COMMON /CONTRL/ was included in
the Version 5.1 BOYCTR code, but no use was made of any of the variables in the common
block. Renamed KSEG to KSEG_WATER to avoid conflicts with local variables in other
subroutines. Also, renamed the focal variable BB to BB_LCL to avoid a conflict with the
global variable BB in /HRNESS/.

CFACTT

CHAIN - The common block /FXVAR/ was included in Subroutine CHAIN, but no variables were
referenced. The common block /TEMPVS/ was eliminated, with all its variables redefined as

local variables.
CHKRET - Common /BAGDIM/ had been moved to MODULE_STANDARD

CINPUT - Note: COMMON /ACTFR1/ was included in the Version 5.1 CINPUT code, but no use
was made of any of the variables in the common block. The /TEMPS/ common block was
placed in MODULE_STANDARD as global variables

CMPUTE
COMPSYS — Eliminated. Information placed in MODULE_STANDARD.

CONTCT - COMMON /ACTFR1/ was included in the Version 5.1 CONTCT code, but no use was
made of any of the variables in the common block.

CONVERT_TIME - New subroutine that converts the elapsed time from the Fortran 90 intrinsic
subroutine DATE_AND_TIME into hours, minutes etc.

CROSS

CUTARE - Renamed U1 to U1 LCL and V1 to Vi1_LCL to avoid conflicts with
MODULE_STANDARD

DATE_TIME — New subroutine that gets the date and time of the run using the Fortran 90 intrinsic
subroutine DATE_AND_TIME.

DAUX - Renamed T2 to T2_LCL to avoid conflicts with MODULE_STANDARD. Took the
[TEMPVS/ common and placed it in MODULE_STANDARD. Placed /CMASS/ into
MODULE_WATER.

DAUX11 - The variables DN, DM, SN, SM, HH, and BN were at the end of the original /TEMPVS/,
the remaining variables are in /TEMPVS/ are in MODULE_STANDARD. They are apparently
not needed in DAUX11, so they were deleted.

DAUX12 - The variables DN, DM, SN, SM, HH, and BN were at the end of the original /TEMPVS/,
the remaining variables are in /TEMPVS/ are in MODULE_STANDARD. Only SN and SM

103

were need, they were made into local variables. The rest are apparently not needed in
DAUX12, so they were deleted.

DAUX22 - The variables DN, DM, SN, SM, HH, and BN were at the end of the original /TEMPVS/,
the remaining variables are in /TEMPVS/ are in MODULE_STANDARD. Only SN, BN, and
HH were needed, which were made into local variables. The rest are apparently not needed
in DAUX22, so they were deleted. Initialized HH directly (i.e. as an array =0, instead of using

nested DO loops).

DAUX31 - The variables DN, DM, SN, SM, HH, and BN were not at the end of the original
[TEMPVS/ in this subroutine

DAUX32 - The only the variables DN, DM, and BN were at the end of the original /TEMPVS/ in
this subroutine, but they are not used in the subroutine, hence they were deleted.

DAUX33 - There were no extra variables at the end of the original /TEMPVS/ in this subroutine

DAUX44 - Note that the notes in the code state that /TEMPVS/ was not being shared by
DAUX44, however, DAUX44 does use it. This use of /TEMPVS/ probably was added later, |
think for the slip joints, but the note wasn't updated.

DAUX55 - Note that the notes in the code state that /TEMPVS/ was not being shared by
DAUX55, however, DAUX55 does use it. This use of /TEMPVS/ probably was added later, |
think for the slip joints, but the note wasn’t updated.

DHHPIN - Initialized arrays BN and DD by direct assignment, i.e., eliminated the DO loops.

DINTG - Renamed the variable array F to FF to coincide with the renaming that occurred in
/CDINT/ to avoid a conflict with F in /CMATRX/. Replaced XTEST with XTEST_SNGL and
REGT with REGT_SNGL so that these are the single-dimensioned versions of XTEST and
REGT. The arrays XTEST and XTEST_SNGL are equivalenced in MODULE_STANDARD,

as are REGT and REGT_SNGL. Note, the comments in the code mentioned that XTEST is
single dimensioned in Subroutine DINTG, but neglect to mention that REGT is also treated as

single-dimensioned in Subroutine DINTG.
DOT31
DOT33
DOTT31
DOTT33

DOTVEC

DRCIJK - Variables D, ANG, and HT were renamed to D_LCL, ANG_LCL, and HT_LCL,
respectively, to avoid any conflict with the global variables D, ANG, and HT.

DRCQUA - Variables D and E were renamed to D_LCL, and E_LCL, respectively, to avoid any
conflict with the global variables D, and E.

DRCYPR - Variables D and B were renamed to D_LCL, and B_LCL, respectively, to avoid any
conflict with the global variables D, and B.

DRGCHK - Renamed the variable H to H_LCL to avoid any conflicts with the H variable in
MODULE_STANDARD. Renamed the variable QQ to QQ_LCL to avoid any potential

104

conflicts with the QQ variable in /CSTRNT/ in MODULE_STANDARD. Also renamed UU to
UU_WATER as was done for /TEMPFD/ in MODULE_WATER_TEMP to avoid conflict with
UU in MODULE_STANDARD.

DRIFT - Replaced /TEMPVS/ with local variables
DSETD - Changed D to D_LCL to avoid a conflict with D in MODULE_STANDARD.

DSETQ - Changed D to D_LCL and E to E_LCL to avoid a conflict with D and E in
MODULE_STANDARD.

DSMSOL -. Changed B to B_LCL to avoid a conflict with B and in MODULE_STANDARD.

DZP - Changed E to E_LCL and GG to GG_LCL and W to W_LCL to avoid conflicts with E, GG,
and W in MODULE_STANDARD.

ELTIME — Minor revisions.

EDEPTH - Changed AB to AB_LCL, B to B_LCL, C1 to C1_LCL and Y to Y_LCL to avoid
conflicts with AB, B, C1, and Y in MODULE_STANDARD.

EFUNCT - Renamed JSTOP to JSTOP_LCL to avoid a conflict with JSTOP in
MODULE_STANDARD.

EJOINT - Changed IJ to IJ_LCL to avoid conflicts with in MODULE_STANDARD. Changed the
[TEMPVS/ common to local variables.

ELARE3 - Made the following variable name substitutions: FF to FF_WATER and RPH to
RPH_LCL (for MODULE_WATERY); NN to NN_LCL, PHI to PHI_LCL, and TQE to TQE_LCL
(for MODULE_STANDARD). Also renamed local variables ASS to A1SS and ASS2 to A2SS
for better code appearance. Set FRC and TQE_LCL = 0.0 without the use of a DO loop in
one place, making use of the new array handling facility of Fortran 90.

ELAREA -. Made the following variable name substitutions: B to B_LCL, Cto C_LCL, F to F_LCL,
FF to FF_LCL, NN to NN_LCL, and PHI to PHI_LCL (for MODULE_STANDARD). FL to)
FL_LCL (for MODULE_WATER). Also renamed local variable ASS to A1SS for better code
appearance. Changed all the /TEMPVS/ variables to local variables.

ELONG -. Made the following variable name substitutions: B to B_LCL, C to C_LCL, D to D_LCL,
E to E_LCL, F to F_LCL, and G to G_LCL to avoid conflicts with the variables in
MODULE_STANDARD.

EQUILB - Changed F1 to F1_LCL to avoid conflicts with in MODULE_STANDARD. Changed the
J[TEMPVS/ common to local variables.

ETA

EULRAD - Renamed B to B_LCL, D to D_LCL, and IC to IC_LCL to avoid conflicts with
MODULE_STANDARD.

EVALFD - Renamed D to D_LCL and F to F_LCL to avoid conflicts with MODULE_STANDARD.
FDINIT - Renamed NTPL to NTPL_LCL and IFLAG to IFLAG_LCL to avoid conflicts with

MODULE_STANDARD. The variables in /TEMPVS/ were placed in MODULE_STANDARD
as global variables, with MS renamed to MS_SEG and NF renamed to NF_FUNCT.

105

FDUX11 - Changed T2 to T2_LCL to avoid conflicts with MODULE_STANDARD.

FDUX12
FDUX22

FILES

FINPUT - Changed IJK to {JK_LCL to avoid conflicts with in MODULE_STANDARD. Changed
MS to MS_SEG, and NF to NF_FUNCT, which had been in the /TEMPVS/ common that was
shared between Subroutines CINPUT, FDINIT, FINPUT, and HINPUT, and which was placed

in MODULE_STANDARD.

FINTVC - Changed T2 to T2_LCL and TMP1 to TMP1_LCL to avoid conflicts with in
MODULE_STANDARD. Note: COMMON /FXCOEF/ was in the Version V.1 code, but no
variables in it were referenced. Placed the common block /OLDDAT/ into the Module

MODULE_FLEXIBLE.

FLXSEG - Changed CN to CN_LCL to avoid conflicts with MODULE_STANDARD. Note: all the
variables in COMMON /TEMPVS/ were made into local variables.

FNAME - Changed F to F_IN, and E to E_IN to avoid conflicts with MODULE_STANDARD.
FNTERP - Changed PHI to PHI_LCL to avoid conflicts with MODULE_STANDARD

FRCDFL - Changed D to D_LCL and F to F_LCL to avoid conflicts with MODULE_STANDARD.
FSETUP - Changed T2 to T2_LCL to avoid conflicts with MODULE_STANDARD.

FSMSOL - Changed B, C, D, IJ, NN to B_LCL, C_LCL, D_LCL, IJ_LCL, NN_LCL to avoid
conflicts with MODULE_STANDARD.

FSPDMP
FUNCHK

FXCAHW
FXCBLT - Changed NN to NN_LCL to avoid conflicts with MODULE_STANDARD.

FXCPLS

FXINPT - Used the Pl from the MODULE_STANDARD instead of the one defined here for
consistency in the code. In Version V.1, COMMON blocks /FXCOEF/ and /FXJROT/ were
included, but no variabies are used from these common blocks. Also, FORMAT # 100 was

not referenced, so it was deleted.

FXMACC - Changed T2 to T2 LCL and T5 to T5_LCL to avoid conflicts with
MODULE_STANDARD.

FXMASS - Changed T2 to T2_LCL to avoid conflicts with MODULE_STANDARD.
FXMODD - Changed NEQ to NEQ_LCL to avoid conflicts with MODULE_STANDARD.

FXMODV - Changed NEQ to NEQ_LCL and VAR to VAR _LCL to avoid conflicts with
MODULE_STANDARD.

106

FXMODVO - Changed NEQ to NEQ_LCL and VAR to VAR_LCL to avoid conflicts with
MODULE_STANDARD.

GET_MONTH_NAME — New subroutine. Converts the number of the month obtained from a call
to Fortran 90 intrinsic subroutine DATE_AND_TIME, to a name.

GLOBAL

HBELT - The /TEMPVS/ common was removed and placed in MODULE_STANDARD. The
following variables were renamed to equate to the renamed variables from the /TEMPVS/
now in MODULE_STANDARD: T1 to T1_HRN, T2 to T2_HRN, Rto R_HRN, V to V_HRN, S
to S_HRN, E to E_HRN, U to U_HRN, TR to TR_HRN, ZR to ZR_HRN, FB to FB_HRN, FP
to FP_HRN, BL to BL_HRN, FCE to FCE_HRN, FR to FR_HRN, T to T_HRN. Note:
COMMON /FXVAR/ was included in Version 5.1, but no variables are actually used from it.

HBPLAY - The /TEMPVS/ common was removed and placed in MODULE_STANDARD. The
following variables were renamed to equate to the renamed variables from the /TTEMPVS/
now in MODULE_STANDARD: T1 to T1_HRN, T2 to T2_HRN, Rto R_HRN, V to V_HRN, S
to S_HRN, U to U_HRN, ZR to ZR_HRN, BL to BL_HRN, and NOLD to NOLD_HRN.

HEDING - The /TEMPVS/ common was removed and placed in MODULE_STANDARD. Note:
COMMONs /ACTFR/ and /ACTFR1/ were included in Version 5.1, but no variables are
actually used from them.

HERRON - Changed PHI to PHI_LCL and P1 to P1_LCL to avoid conflicts with
MODULE_STANDARD. Also changed P2 to P2_LCL for consistency with P1.

HICCSI - The /CDINT/ common was deleted and the variables in it: JDTPTS, SPAN, IDBDY and
Z were passed as arguments into the subroutine. Z was renamed to Z_LCL to free up the
variable Z for giobal use. DT was renamed to DT_LCL, AREA was renamed to AREA_LCL,
and HT was renamed to HT_LCL to avoid conflicts with global variables in
MODULE_STANDARD. The variable EPS(6) was used to replace the explicit use of 1.0D-6
used in one of the IF tests.

HINPUT - The /TEMPVS/ common was removed and placed in MODULE_STANDARD. NF was
renamed to NF_FUNCT to equate to the renamed variables from the /T EMPVS/ now in

MODULE_STANDARD.

HPTURB -The /TEMPVS/ common was removed and placed in MODULE_STANDARD. The
following variables were renamed to equate to the renamed variables from the /TEMPVS/
now in MODULE_STANDARD: T1 to T1_HRN, T2 to T2_HRN, Rto R_HRN, E to E_HRN, T
to T_HRN, RHS to RHS_HRN, IJK to WK_HRN, C to C_HRN, and FCE to FCE_HRN.
Removed equivalencing of BLOSS and HLOSS and placed in MODULE_STANDARD.
Renamed SCALE to SCALE_LCL and IJ to IJ_LCL to avoid any conflicts with global
variables.

HSETC - The /TEMPVS/ common was removed and placed in MODULE_STANDARD. The
following variables were renamed to equate to the renamed variables from the [TEMPVS/
now in MODULE_STANDARD: TR to TR_HRN, FB to FB_HRN, U to U_HRN, V to V_HRN,
B to B_HRN, S to S_HRN, BL to BL_HRN, FR to FR_HRN, R to R_HRN, E to E_HRN, Tto
T_HRN, RHS to RHS_HRN, IJK to IJK_HRN, C to C_HRN, and FP to FP_HRN. Renamed
C1to C1_LCL and IJ to IJ_LCL to avoid any conflicts with global variables.

HYABF — Changed F to F_LCL, and B to B_LCL to avoid conflicts with MODULE_STANDARD.

107

HYBND — Changed C to C_LCL, and U to U_LCL to avoid conflicts with MODULE_STANDARD.

HYBOX — Changed E to E_LCL, T2to T2_LCL, D to D_LCL, CK to CK_LCL, P1 to P1_LCL, and
F to F_LCL to avoid conflicts with MODULE_STANDARD.

HYDAD — Changed D to D_LCL to avoid conflicts with MODULE_STANDARD.

HYEST - All local variables were explicitly typed. Deleted /TEMPVS/ and used the
/PLELP_TEMPVS/ variables for D12=>DMNT_PLP and renamed R to R_PLP. Made A, C,
T, V and B into local variables. Renamed B to B_LCL and Cto C_LCL. C_LCL, Tand V are
now passed as arguments to Subroutine HYLPX. The remaining variables that were in
ITEMPVS/ are not used by the subroutine. Use the object-orientated nature of arrays to zero
some of them. Changed BB to BB_LCL, F1 to F1_LCL, and TAB to TAB_LCL to avoid
conflicts with MODULE_STANDARD.

HYFCN — Changed C to C_LCL to avoid conflicts with MODULE_STANDARD. Made a local
parameter, Q_LIMIT, for an IF test.

HYLIM — Changed B to B_LCL, C to C_LCL, G to G_LCL, P1 to P1_LCL, P2 to P2_LCL, BD to
BD LCL, U to U_LCL, W to W_LCL, and E to E_LCL, to avoid conflicts with
MODULE_STANDARD. Replaced a hard-wired 1x10-D10 with EPS(10) in an epsilon test for
consistency. Made ITER into a local parameter for its IF test.

HYLPR — Changed C to C_LCL, and E to E_LCL, to avoid conflicts with MODULE_STANDARD.

HYLPX — The /TEMPVS/ common block was deleted. Only 3 variables within it are actually used
and were renamed as follows: R to R_LCL and D to D_LCL. V was made into a local
variable. All three variables (R_LCL, D_LCL, and V) are now passed into the subroutine as
arguments. Changed B to B_LCL, W to W_LCL, E to E_LCL, and C to C_LCL to avoid
conflicts with MODULE_STANDARD. Used new f95 option to initialize S array without using
Do loops. Used the CYCLE statement.

HYNTR - Changed C1 to C1_LCL, CN to CN_LCL, BET to BET_LCL, F to F_LCL, P1 to
P1_LCL, and TAB to TAB_LCL, to avoid conflicts with MODULE_STANDARD. Replaced the
hardwired iteration count with the PARAMETE ITER_HYNTR. Replaced the hardwired 1x10-
10 with EPS(10). Deleted /TEMPVS/ and replaced with the USE statement to
/PLELP_TEMPVS/; using D12=>DMNT_PLP, and renamed R to R_PLP. Made AZ into a
local variable, as well as A and B. Renamed B to B_LCL to avoid conflicts with
MODULE_STANDARD. The other variables in /TEMPVS/ were not used.

HYPEN — Changed E to E_LCL, to avoid conflicts with MODULE_STANDARD.

HYREA - Changed BB to BB_LCL, H to H_LCL, AB to AB_LCL, and AREA to AREA_LCL to
avoid conflicts with MODULE_STANDARD.

HYSOL

HYVAL — Replaced the hard-wired 0.000001’s with EPS(6). Replaced the hard-wired 100 limit
on iterations with MAXITER_HYVAL. Changed F1 to F1_LCL, U to U_LCL, BD to BD_LCL,
and NSTEP to NSTEP_L.CL, to avoid conflicts with MODULE_STANDARD.

HYVBX — Changed C to C_LCL, D to D_LCL, and B to B_LCL, to avoid conflicts with
MODULE_STANDARD.

HYVFN — Changed C to C_LCL, Uto U_LCL, F to F_LCL, and B to B_LCL, to avoid conflicts with
MODULE_STANDARD.

IMPLS2 — The COMMON BLOCK, /CSTRNT/, was included in the subroutine in version V.1, but
no variables were used from it. Changed H to H_LCL, and TN to TN_LCL, to avoid conflicts
with MODULE_STANDARD. Deleted /TEMPVS/ and made all the variables local variables.

iIMPULS

INITAL
INPROJ — Changed 1J to IJ_LCL to avoid any conflicts with MODULE_STANDARD.

INRTIA — Changed T1 to T1_LCL, T2 to T2_LCL, and T5 to T5_LCL, to avoid any conflicts with
MODULE_STANDARD. Note: changed hardwired (32.114x12.0) to G of CNSNTS to
maintain the flexibility of the code.

INTANG — Note that the COMMON BLOCK /VPOSTN/ was included in this subroutine in version
V.1, but no variables were used from it.

INTERS — Renamed B to B_LCL and C to C_LCL to avoid conflicts with global variables in
MODULE_STANDARD.

INTLIN - Renamed T2 to T2 LCL to avoid conflicts with global variables in
MODULE_STANDARD.

INVERS — Renamed B to B_LCL and W to W_LCL to avoid conflicts with global variables in
MODULE_STANDARD. Changed the local array, AA from AA(50,50) to AA(ND,ND) to
ensure that the originally hardwired array, which stores array A, is always the same size as A.

JNTFNC - Renamed T2 to T2_LCL and T5 to T5_LCL to avoid conflicts with global variables in
MODULE_STANDARD.

JNTROT -~ Renamed T2 to T2_LCL to avoid conflicts with global variables in
MODULE_STANDARD. Placed the common block /OLDDAT/ into Module

MODULE_FLEXIBILE.

KINPUT — Deleted the Common /TEMPVS/ and instead used the variables KTITLE and JTITLE
from /CINPUT_TEMPVS/ in Module MODULE_STANDARD. Made the array TH, that had
been in the /TEMPVS/ common block, into a local array. Replaced the old intrinsic function
DFLOAT with DBLE. Renamed BLANK to BLANK_4 and changed it from a REAL type to a
CHARACTER type.

L_LTIME — Renamed to avoid conflicts with intrinsic subroutines on some machines that are
called LTIME. Calls the Fortran 95 intrinsic subroutine CPU_TIME.

LUDCMP — Replaced 2 cases of hard-wired epsilon tests with the EPS array. Renamed ORDER

to |_ORDER so that its first letter is consistent with the default meanings.

LUPIVT — Renamed ORDER to |_ORDER so that its first letter is consistent with the default
meanings. Also renamed SAVE to RSAVE to be different from the SAVE intrinsic function.

LUSUB - Renamed ORDER to |_ORDER and LU to R_LU so that their first letters are consistent
with the default meanings. Also renamed B to B_LCL to avoid conflicts with variables in
MODULE_STANDARD.

MAIN - Renamed the logical variables NPRT1, NPRT2, NPRT3 to L_NPRT1, L_NPR2,
L_NPRT3, respectively, for clarity. Added a PROGRAM statement and made the END

109

statement a named END statement for clarity. Removed all the code related to input from the
A cards and placed it in a new subroutine, AINPUT. Removed Hollerith usage in FORMAT

11 and in the call to Subroutine PRINT.

MAT31 - Deleted the PARAMETER statements, which serve no purpose anyway. Renamed B to
B_LCL and C to C_LCL to avoid conflicts with variables in MODULE_STANDARD.

MAT33 — Renamed B to B_LCL and C to C_LCL to avoid conflicts with variables in
MODULE_STANDARD. All DO loops that ended on a statement function had the termination
number replaced with an END DO statement.

MUTPLY - Renamed B to B_LCL and C to C_LCL to avoid conflicts with variables in
MODULE_STANDARD.

NUMCHR - Changed the CHARACTER typing from CHARACTER*(*) to CHARACTER (*).
ORTHO — Renamed D to D_LCL to avoid conflicts with variables in MODULE_STANDARD.

OUTPUT - Note that Common block /ACTF1/ was listed in the Version V.1 code but no variables
were referenced from it. The /TEMPVS/ common was deleted and all the variables in it were
made local variables. Apparently Subroutine HEDING, which is called by Subroutine
OUTPUT, does not need any of the variables in the /TEMPVS/. Renamed IJK to [UK_LCL,
USEC to USEC_LCL, T2 toT2_LCL and T5 to T_LCL to avoid conflicts with variables in
MODULE_STANDARD. Found and corrected an apparent error. It appeared that if the
number of airbags was not 0, then count of the number of tabular time histories would be
incorrectly calculated because the count of the tabular time histories for the water forces
would be skipped over. This occurred because there was a GO TO 960 in the section for the
airbags that would skip over the water forces count for the tabular time histories if the number
of airbags was not equal to 0. Furthermore, a computed GO TO statement was replaced with
a CASE construct, which required duplicating some of the code instead of using GO TO
statements, to avoid jumping into blocks. Made the array TDATA ALLOCATABLE to save a
little bit of memory. The following still needs to be done: parameterize the use of “100.0’ that
is currently used to hardwire the scaling of several parameters.

PANEL — Renamed T2 to T2_LCL to avoid conflicts with MODULE_STANDARD.

PDAUX — Renamed NEQ to NEQ_LCL, MBAG to MBAG_LCL, DER to DER_LCL, and VAR to
VAR_LCL to avoid conflicts with MODULE_STANDARD. Used REGT_SNGL instead of
REGT because REGT was used in single dimension form. Deleted /TEMPVS/, made VXT a
local variable. Note: T in /TEMPVS/ was not used in the subroutine.

PFDBOY - Note: the COMMON /SGMNTS/ was included in the V.1 code, but no variables are
used from it. Renamed PH! to PHI_LCL and FF to FF_WATER to avoid conflicts with

MODULE_STANDARD.

PFDFRC - Note: the COMMON /SGMNTS/ was included in the V.1 code, but no variables are
used from it. Renamed PHI to PHI_LCL, TMP1 to TMP1_LCL, and FF to FF_WATER to
avoid conflicts with MODULE_STANDARD. Note: TMP1 is computed but never used.

PFDWXC — Note: the COMMON /SGMNTS/ was included in the V.1 code, but no variables are
used from it. Renamed PHI to PHI_LCL, TMP1 to TMP1_LCL, and FF to FF_WATER to
avoid conflicts with MODULE_STANDARD. Note: TMP1 is computed but never used.

PLEDG — COMMON /TEMPVS/ was deleted and replaced with a USE statement, with some of its
variables renamed with the suffix “ PLP” and placed in /PLELP_TEMPVS/, while other
variables were made into local variables (refer to the section on /PLELP_TEMPVS for

details]. The renamed local variables from /TEMPVS/ are: AB to AB_LCL, AREA to
AREA _LCL, B to B_LCL, BB to BB_LCL, E to E_LCL, and U to U_LCL. Renamed the local
variables BD to BD_LCL and PL to PL_LCL to avoid conflicts with MODULE_STANDARD. -

PLELP — COMMON /TEMPVS/ was deleted with some of its variables renamed with the suffix
“ PLP” and placed in /PLELP_TEMPVS/, while other variables were made into local variables
(refer to the section on /PLELP_TEMPVS for details]. The renamed local variables from
[TEMPVS/ are: UH_LCL, TD_LCL, and XH_LCL. Renamed the local variables NN to
NN_LCL and BET to BET_LCL to avoid conflicts with MODULE_STANDARD.

PLREA — Renamed AB to AB_LCL, AREA to AREA_LCL, BB to BB_LCL, C to C_LCL, D to
D_LCL, E to E_LCL, and H to H_LCL to avoid conflicts with MODULE_STANDARD.

PLSEGF — Common /FXVAR/ was listed in the V.1 code, but no variables were used from it.
COMMON /TEMPVS/ was deleted with some of its variables renamed with the suffix “_PLP”
and placed in /PLELP_TEMPVS/, while other variables were made into local variables (refer
to the section on /PLELP_TEMPVS for details). The renamed local variable from /T EMPVS/
is: FR_LCL. The other variables from /TEMPVS/ made into local variables are: CF, VRM,
VRT, VRTS, VRTEST, ELOSS, WCM, WCN, TQM, TQN, TQNT, and VMN. Renamed the
local variable FF to FF_LCL to avoid conflicts with MODULE_STANDARD. Note: should
make VRTEST into a parameter.

POSTPR - The /TEMPVS/ was replaced with a USE statement for /HEDING_TEMPVS/. Used
array object form to initialize several variables, e.g. A = 0, where A(l,J). The /CDINT/
common was deleted and the variables in it: JDTPTS, SPAN, IDBDY and ZZ were made into
local variables and passed to Subroutine HICCSI as new arguments. Array ZZ was made
ALLOCATABLE. Added a somewhat ineffectual test for NHIC, as well as an associated
STOP 478. Fixed logic so of the loop so that Subroutine E_ELTIME is properly initialized.

PRINT — Renamed T2 to T2_LCL, and MBAG to MBAG_LCL to avoid conflicts with
MODULE_STANDARD. Note: Common block /ACTFR1/ was listed in the V.1 code, but no
variables were used from it. Deleted /TEMPVS/, and made all the variables that were in the
common block local variables.

PRNCIPAL - Note that this subroutine had IMPLICT REAL*8 (A-Z), which is inconsistent with all
the over 100 other subroutines which had IMPLICT REAL*8 (A-H,0-Z). Therefore, to keep
some consistency all the variables beginning with the letters I-N, were renamed with a
preface of “R_". These variables are: R_l, R_L, R_M, R N, R_I1, R_I2, R_I3, R_R_IXX,
R_IYY, R_1ZZ, R_IXY, R_IYZ, and R_IXZ. In addition, all the integer values, such as 1, 2
etc., were made into explicit real constants, e.g. 1.0 for the sake of clarity. Also, comments
describing basic operations, such as how to normalize a vector, were deleted. Furthermore,
the local definition of Pl was deleted and replaced with replaced with a USE statement
referencing the global definition of Pl used by the rest of the program. Deleted many
unnecessary parentheses. Added a missing RETURN statement. Changed the one WRITE
statement from logical unit 5 to logical unit 6, as well as putting the outputted statement into a
format statement and gave it carriage control.

QSET - Renamed F to F_LCL, T2 to T2_LCL, DER to DER_LCL and Y to Y_LCL to avoid
conflicts with MODULE_STANDARD.

QUAT - Renamed R to R_LCL and ANG to ANG_LCL to avoid conflicts with
MODULE_STANDARD. Renamed DOT to DOT_LCL to avoid confusion with subroutine of
the same name.

RCRT — Renamed W to W_LCL, PL to PL_LCL and S1 to S1_LCL to avoid conflicts with
MODULE_STANDARD. Used the matrix nature of T to initialize it.

111

ROBINP
ROT - Renamed C to C_LCL to avoid conflicts with MODULE_STANDARD.

ROTATE — COMMON /TEMPVS/ was deleted and all its variables were made into local variables.
The common /ACTFR1/ was listed in the V.1 version but no variables from it were
referenced. Renamed IJ to IJ_LCL, T2 to T2_LCL and T5 to T5_LCL to avoid conflicts with
MODULE_STANDARD. Changed the code for the water forces from lower case to upper
case. Added the STOP number 449 to the wind force section of the code because the STOP

was not numbered.

SEGSEG - COMMON /TEMPVS/ was deleted with some of its variables renamed with the suffix
“_PLP” and placed in /PLELP_TEMPVS/, while other variables were made into local variables
(refer to the section on /PLELP TEMPVS for details]. The renamed local variables from
[TEMPVS/ are: B_LCL, T1 _LCL, T2_LCL, T3_LCL, T4_LCL, TEMP_LCL, TT4_LCL, and
TT5_LCL. Renamed the local variables BET to BET_| LCL, NN to NN_| LCL, NS to NS_LCL,
and S1 to S1_LCL to avoid conflicts with MODULE_ STANDARD.

SETUP1 - The following COMMON /TEMPVS/ variables were made into local variables; S, S1,
S2, SR2, T, T1, T2, T3, T4, T5, T6, VIT, while the following variables were deleted because
they were not used: T7, T8, T9, T10, T11, T12, HH, TT1, TT2, SQS1, 83, 84, SR2.
Renamed T2 to T2_LCL and T5 to T5_LCL to avoid conflicts with MODULE_STANDARD.

SETUP2 — The all the COMMON /TEMPVS/ variables were made into local variables except S
and T12, which were not used in the subroutine. Renamed FORCE to FORCE_LCL, S1 to
S1_LCL, T2to T2_LCL and T5 to T5_LCL to avoid conflicts with MODULE_STANDARD.

SIMPSN — Renamed F to F_LCL and B to B_LCL to avoid conflicts With MODULE_STANDARD.

SINPUT — Common block /ACTFR1/ was included in the V.1 code but was not referenced. All
the COMMON /TEMPVS/ variables were made into local variables. Renamed S1 to S1_LCL,
and P1 to P1_LCL to avoid conflicts with MODULE_STANDARD.

SOLVA - Renamed A11 to A11_LCL, A13 to A13_LCL, A22 to A22_LCL, and A23 to A23_LCL to
avoid conflicts with MODULE_STANDARD.

SOLVR - Renamed B to B_LCL, D to D_LCL, and T2 to T2_LCL, to avoid conflicts with
MODULE_STANDARD.

SPDAMP - Note: Common /FXVAR/ was listed in the V.1 code, but was not referenced. All
COMMON /TEMPVS/ variables were made into local variables. Renamed T2 to T2_LCL and
T5 to T5_LCL to avoid conflicts with MODULE_STANDARD.

SPLINE — Renamed C to C_LCL, F to F_LCL and Y to Y_LCL to avoid conflicts with
MODULE_STANDARD.

SPRNGF - Renamed D to D_LCL, JSTOP to JSTOP_LCL, U to U_LCL, and Y to Y_LCL to avoid
conflicts with MODULE_STANDARD.

TILDE

TRIGFS

TRNPOS

U1ASC —~ Added a SAVE statement, which is redundant (since the DATA statement implies this
attribute) but adds to the clarity of the code.

U1OLD -Replaced the TEMPVS common block with all local variables. Deleted some
unnecessary IF tests on NWATER. Added SAVE statement for clarity.

U1ASCD - Put commons /COUTN/, /COUTFMT/, and /BAGDIM/ into MODULE_STANDARD.
Replaced the TEMPVS common block with all local variables, most of the variables that were
in the TEMPVS common block were not needed and hence deleted. Deleted some
unnecessary IF tests on NWATER.

U1ASCH — Subroutine was a mess, with many inconsistencies and gross mistakes. Note: the
following commons were included in V.1, but not used: /CSTRNT/, /FORTOR/, /RSAVE/,
SGMNTS. Replaced /TEMPVS/ with local variables except for the following variables that
were in /TEMPVS/ but were not needed and hence deleted: XD, XSEGLP, T1, T2, T3, T4,
T5, XBAR, XT3, XRK1, XRK2, XVDAT, XDUMMY, IMPL. The date of the run that was in
[TITLES/, was changed back to DATE from DATEN to coincide with the definition in
MODULE_STANDARD. Defined all the “X...” arrays that were in /TEMPVS/ as REAL,
instead of the incorrect default of double precision that was in V.1.

UNIT1 — Changed double quotes to single quotes.

UNTVEC

UPDATE - Note: common blocks /ACTFR/ and /FXJROT/ were included in the Version V.1 code
. but no variables were referenced from them.

UPDFDC

UPDPFD - Renamed TQE to TQE_LCL to avoid conflicts with global variables in
MODULE_STANDARD.

USER - Note: Common ACTFR was listed in V.1, but no reference was made to it.

VECANG
VECMAG
VEHPOS - All the variables in the /TEMPVS/ were made into local variables.

VINITL - Note that common /CONTRL/ was referenced and apparently NGRND was used from it
in previous versions, but is currently not used. Changed the dimension IVREF from 6 to
MAXVEH for consistency. All the variables in the /TEMPVS/ were made into local variables.
NUMVEH was renamed to NUMVEH_LCL, and IVREF was renamed to IVREF_LCL to avoid
conflicts with MODULE_STANDARD.

VINO12 - All the variables in the /TEMPVS/, as was well as the related parameters, were placed
in MODULE_STANDARD. NUMVEH was renamed to NUMVEH_LCL, and F1 was renamed
to F1_LCL to avoid conflicts with MODULE_STANDARD. The parameter CNV_MSEC was
created to make the conversion of time from seconds to milliseconds clearer.

VINO34 ~ Most of the variables in the /TTEMPVS/, was well as the related parameters, were
replaced by their definition in /VIN_TEMPVS/ in MODULE_STANDARD. However, T3L, T3A,
and T33 were in the V.1 code but not referred to. The parameter VT4 was listed but were not
used. These variables were eliminated. Several other variables that were at the end of the
[TEMPVS/, were made into local variables. NUMVEH was renamed to NUMVEH_LCL, and

113

MSEG was renamed to MSEG_LCL to avoid conflicts with MODULE_STANDARD. The
parameter CNV_MSEC was created to make the conversion of time to msec clearer.

VINPUT — Most of the variables in the [TEMPVS/, was well as the related parameters, were
replaced by their definition in /VIN_TEMPVS/ in MODULE_STANDARD.

VINTST — Most of the variables in the /TEMPVS/, was well as the related parameters, were
replaced by their definition in /VIN_TEMPVS/ in MODULE_STANDARD. NUMVEH was

renamed to NUMVEH_LCL to avoid conflicts with MODULE_STANDARD.
VISCOS - Renamed HA to HA_LCL to avoid conflicts with MODULE_STANDARD.

VISPR - The /TEMPVS/ was deleted and all the variables were made into local variables, except
T8, which was not used in the subroutine. Note that /FXVAR/ was included in V.1, but no
variables were referenced from it. Renamed IJ to I_LCL to avoid conflicts with
MODULE_STANDARD. Treated T3, T6, T9, and ANGL arrays as objects to initialize them,
i.e. T3 = 0.0 instead of using a DO loop. Replaced “1HO” with “0”™ in 2 FORMAT statements.

VPATH — Renamed NGRND to NGRND_LCL, NPG to NPG_LCL, NVEH to NVEH_LCL,
NUMVEH to NUMVEH LCL and SEG to SEG_LCL to avoid conflicts with
MODULE_STANDARD.

VPATH2 — NUMVEH was renamed to NUMVEH_LCL, IVREF was renamed to IVREF_LCL, and
NGRND was renamed to NGRND_LCL to avoid conflicts with MODULE_STANDARD.

VSPLIN - Variables in /TEMPVS/ that had been placed in /VIN_TEMPVS/ -in
MODULE_STANDARD, were used, with remaining variables that had been in /T EMPVS/,
that were needed, were made into local variables. The variable F was renamed to F_LCL to
avoid conflicts with MODULE_STANDARD. Made the arrays: F_LCL, Q1, SP, TT, and XYZ
allocatable, allocated them and then deallocated them on exit from the subroutine to save
space. The parameter MAXVT3 was listed in the comments in V5.1 as being needed but
was not actually used. Furthermore, the variable THET was listed in the TEMPVS but was
not actually used in the subroutine and hence was eliminated.

WATHED — Note that common blocks /CONTRL/ and /TITLES/, were listed in V.1, but no
variables from it were referenced. Eliminated all the variables used by /TEMPVS/, except
TDATA and USEC, which are now coming into the subroutine by the use of
/HEDING_TEMPVS/. Renumbered all the FORMAT statements.

WATINP — Renamed KSEG to KSEG_WATER because it had been renamed for /TEMPFD/.
Merged the format statements into the body of the code. Eliminated format statements 1600
and 3900 because no reference was made to them. Eliminated the original 100 CONTINUE
statement because no reference was made to it in the subroutine. Renumbered all the
FORMAT statements for clarity. Gave the STOP statement a character expression, even
though it needs a number. Also renamed TMP1 to TMP1_LCL to avoid conflicts with

MODULE_STANDARD.

WATOUT — Note that common block /CONTRL/, was listed in V.1, but no variables from it were
referenced. Eliminated all the variables used by /TEMPVS/, except TDATA, which is now
coming into the subroutine by the use of /HEDING_TEMPVS/. Renamed F to F_LCL, FFto
FF_LCL, KELL to KELL_LCL, TMP to TMP_LCL, USEC to USEC_LCL, and WF to WF_LCL
to avoid conflicts with other similarly name global variables. Also, renamed TMP1 to
TMP1_LCL to avoid a conflict with global variables. Treated arrays AF, BF, DF, WEF,
F_LCL, FF_LCL as objects in many places, i.e. eliminated some DO loops to take advantage
of the object nature of Fortran 90. Format statement 1000 was eliminated because it was not
used. Renumbered all the FORMAT statement and DO loops that remain.

114

WATSET
WAVEL - Renamed TMP1 to TMP1_LCL to avoid a conflict with global variables.

WBAREA — Note that common blocks /CONTRL/, /CNSNTS/, /ICNTSRF/ and /WATINF1/ were
listed in V.1, but no variables from them were referenced. Renamed KEG to KEG_WATER
and UU to UU_WATER to avoid conflicting with a similarly named global variable. Also,
renamed TMP1 to TMP1_LCL and V3 to V3_LCL to avoid a conflict with global variables.
Note: hard-wired variables should be replaced with an EPS test

WELFOR - Note that common blocks /CONTRL/, and /WATINF2/ were listed in V.1, but no
variables from them were referenced. Renamed KEG to KEG_WATER to avoid conflicting
with a similarly named global variable. Also, renamed TMP1 to TMP1_LCL and TQE to
TQE_LCL to avoid a conflict with global variables. Note: a hard-wired variable should be
replaced with an EPS test.

WEXPHI ~ Note that common block /CNSNTS/ was listed in V.1, but no variables from it were
referenced.

WFORCE - Note that common blocks /CONTRL/, /RSAVE/, and /IWATGRD/ were listed in V.1,
but no variables from them were referenced. Renamed UU to UU_WATER and KEG to
KEG_WATER to avoid conflicts with other similarly name global variables. Also, renamed
TMP1 to TMP1_LCL to avoid a conflict with global variables.

WINDY - Common /TEMPVS/ was deleted and all variables made into local variables. Renamed
AREA to AREA _LCL, BET to BET_LCL, BTE to BTE_LCL, C to C_LCL, FF to FF_LCL, NN to
NN_LCL, NSTEPS to NSTEPS_LCL, SCALE to SCALE_LCL, and Y to Y_LCL to avoid
conflicts with other similarly name global variables. The DO 21 block and several others
were eliminated and replaced with object equalities instead of by components. Moved the
definition of MOELP closer to where it is used. Deleted the section on the forces and torques
and replaced with Subroutine FORCE_TORQUE. Defined the parameter FT_SCALE to
make it clearer where it is used. Used the VECMAG function in place of explicitly doing it in
the subroutine.

XDY - Variable D was renamed to D_LCL, to avoid conflicts with MODULE_STANDARD.

YPRDEG - Variable D was renamed to D_LCL, to avoid conflicts with MODULE_STANDARD.

115

